ترغب بنشر مسار تعليمي؟ اضغط هنا

Radial and Nonradial Oscillation Modes in Rapidly Rotating Stars

120   0   0.0 ( 0 )
 نشر من قبل Catherine Lovekin
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Radial and nonradial oscillations offer the opportunity to investigate the interior properties of stars. We use 2D stellar models and a 2D finite difference integration of the linearized pulsation equations to calculate non-radial oscillations. This approach allows us to directly calculate the pulsation modes for a distorted rotating star without treating the rotation as a perturbation. We are also able to express the finite difference solution in the horizontal direction as a sum of multiple spherical harmonics for any given mode. Using these methods, we have investigated the effects of increasing rotation and the number of spherical harmonics on the calculated eigenfrequencies and eigenfunctions and compared the results to perturbation theory. In slowly rotating stars, current methods work well, and we show that the eigenfunction can be accurately modelled using 2nd order perturbation theory and a single spherical harmonic. We use 10 Msun models with velocities ranging from 0 to 420 km/s (0.89 Omega_c) and examine low order p modes. We find that one spherical harmonic remains reasonable up to a rotation rate around 300km s^{-1} (0.69 Omega_c) for the radial fundamental mode, but can fail at rotation rates as low as 90 km/s (0.23 Omega_c) for the 2H mode or l = 2 p_2 mode, based on the eigenfrequencies alone. Depending on the mode in question, a single spherical harmonic may fail at lower rotation rates if the shape of the eigenfunction is taken into consideration. Perturbation theory, in contrast, remains valid up to relatively high rotation rates for most modes. We find the lowest failure surface equatorial velocity is 120 km/s (0.30 Omega_c) for the l = 2 p_2 mode, but failure velocities between 240 and 300 km/s (0.58-0.69 Omega_c)are more typical.



قيم البحث

اقرأ أيضاً

For the first time nonradial oscillations of superfluid nonrotating stars are self-consistently studied at finite stellar temperatures. We apply a realistic equation of state and realistic density dependent model of critical temperature of neutron an d proton superfluidity. In particular, we discuss three-layer configurations of a star with no neutron superfluidity at the centre and in the outer region of the core but with superfluid intermediate region. We show, that oscillation spectra contain a set of modes whose frequencies can be very sensitive to temperature variations. Fast temporal evolution of the pulsation spectrum in the course of neutron star cooling is also analysed.
We present results of a search for identification of modes responsible for the six most significant frequency peaks detected in the rapidly rotating SPB star $mu$ Eridani. All published and some unpublished photometric data are used in our new analys is. The mode identification is carried out with the method developed by Daszynska-Daszkiewicz et al. employing the phases and amplitudes from multi-band photometric data and relying on the traditional approximation for the treatment of oscillations in rotating stars. Models consistent with the observed mean parameters are considered. For the five frequency peaks, the candidates for the identifications are searched amongst unstable modes. In the case of the third frequency, which is an exact multiple of the orbital frequency, this condition is relaxed. The systematic search is continued up to a harmonic degree $ell =6$. Determination of the angular numbers, $(ell,m)$, is done simultaneously with the rotation rate, $V_{rm rot}$, and the inclination angle, $i$, constrained by the spectroscopic data on the projected rotational velocity, $V_{rm rot}sin i$, which is assumed constant. All the peaks may be accounted for with g-modes of high radial orders and the degrees $ellle 6$. There are differences in some identifications between the models. For the two lowest--amplitude peaks the identifications are not unique. Nonetheless, the equatorial velocity is constrained to a narrow range of (135, 140) km/s. Our work presents the first application of the photometric method of mode identification in the framework of the traditional approximation and we believe that it opens a new promising direction in studies of SPB stars.
Interpreting the oscillations of massive and intermediate mass stars remains a challenging task. In fast rotators, the oscillation spectrum of p-modes is a superposition of sub-spectra which correspond to different types of modes, among which island modes and chaotic modes are expected to be the most visible. In the case of island modes, a semi-analytic formula describing the asymptotic behavior of island modes has been obtained previously. We study the properties of high frequency chaotic p-modes in a polytropic model. Unexpected peaks appear in the frequency autocorrelations of the spectra. Our goal is to find a physical interpretation for these peaks and also to provide an overview of the mode properties. We use the 2D oscillation code TOP to produce the modes and acoustic ray simulations to explore the wave properties in the asymptotic regime. Using the tools developed in the field of quantum chaos (or wave chaos), we derive an expression for the frequency autocorrelation involving the travel time of acoustic rays. Chaotic mode spectra were previously thought to be irregular, i. e. described only through their statistical properties. Our analysis shows the existence, in chaotic mode spectra, of a pseudo large separation. This means that chaotic modes are organized in series, such that the modes in each series follow a nearly regular frequency spacing. The pseudo large separation of chaotic modes is very close to the large separation of island modes. Its value is related to the sound speed averaged over the meridional plane of the star. In addition to the pseudo large separation, other correlations appear in the numerically calculated spectra. We explain their origin by the trapping of acoustic rays near the stable islands.
Context: Mode identification has remained a major obstacle in the interpretation of pulsation spectra in rapidly rotating stars. Aims: We would like to test mode identification methods and seismic diagnostics in rapidly rotating stars, using oscill ation spectra based on new theoretical predictions. Methods: We investigate the auto-correlation function and Fourier transform of theoretically calculated frequency spectra, in which modes are selected according to their visibilities. Given the difficulties in predicting intrinsic mode amplitudes, we experimented with various ad-hoc prescriptions for setting these, including using random values. Furthermore, we analyse the ratios between mode amplitudes observed in different photometric bands. Results: When non-random intrinsic mode amplitudes are used, our results show that it is possible to extract the large frequency separation or half its value, and sometimes twice the rotation rate, from the auto-correlation function. The Fourier transforms are mostly sensitive to the large frequency separation or half its value. When the intrinsic mode amplitudes include random factors, the results are far less favourable. We also find that amplitude ratios provide a good way of grouping together modes with similar characteristics. By analysing the frequencies of these groups, it is possible to constrain mode identification as well as determine the large frequency separation and the rotation rate.
Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of sub-stellar companions by their hosting stars. In the present letter we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting very short rotation period with values ranging from 13 to 55 days. This finding points for remarkable surface rotation rates, up to 18 times the Sun rotation. These giants are combined with 6 other recently listed in the literature for mid-IR diagnostic based on WISE information, from which a trend for an infrared excess is revealed for at least a half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا