ﻻ يوجد ملخص باللغة العربية
We present the identification of very low frequency g modes in the asymptotic regime and two important parameters that have long been waited for: the core rotation rate, and the asymptotic equidistant period spacing of these g modes. The GOLF instrument on board the SOHO space observatory has provided two decades of full-disk helioseismic data. In the present study, we search for possible collective frequency modulations that are produced by periodic changes in the deep solar structure. Such modulations provide access to only very low frequency g modes, thus allowing statistical methods to take advantage of their asymptotic properties. For oscillatory periods in the range between 9 and nearly 48 hours, almost 100 g modes of spherical harmonic degree 1 and more than 100 g modes of degree 2 are predicted. They are not observed individually, but when combined, they unambiguouslyprovide their asymptotic period equidistance and rotational splittings, in excellent agreement with the requirements of the asymptotic approximations. Previously, p-mode helioseismology allowed the g-mode period equidistance parameter $P_0$ to be bracketed inside a narrow range, between approximately 34 and 35 minutes. Here, $P_0$ is measured to be 34 min 01 s, with a 1 s uncertainty. The previously unknown g-mode splittings have now been measured from a non-synodic reference with very high accuracy, and they imply a mean weighted rotation of 1277 $pm$ 10 nHz (9-day period) of their kernels, resulting in a rapid rotation frequency of 1644 $pm$ 23 nHz (period of one week) of the solar core itself, which is a factor 3.8 $pm$ 0.1 faster than the rotation of the radiative envelope. The g modes are known to be the keys to a better understanding of the structure and dynamics of the solar core. Their detection with these precise parameters will certainly stimulate a new era of research in this field.
Solar gravity modes (or g modes) -- oscillations of the solar interior for which buoyancy acts as the restoring force -- have the potential to provide unprecedented inference on the structure and dynamics of the solar core, inference that is not poss
We present the observation of a major solar eruption that is associated with fast sunspot rotation. The event includes a sigmoidal filament eruption, a coronal mass ejection, and a GOES X2.1 flare from NOAA active region 11283. The filament and some
Aims. The Sun shows strong variability in its magnetic activity, from Grand minima to Grand maxima, but the nature of the variability is not fully understood, mostly because of the insufficient length of the directly observed solar activity records a
The relation of period spacing ($Delta P$) versus period ($P$) of dipole prograde g modes is known to be useful to measure rotation rates in the g-mode cavity of rapidly rotating $gamma$ Dor and slowly pulsating B (SPB) stars. In a rapidly rotating s
Using patterns in the oscillation frequencies of a white dwarf observed by K2, we have measured the fastest rotation rate, 1.13(02) hr, of any isolated pulsating white dwarf known to date. Balmer-line fits to follow-up spectroscopy from the SOAR tele