ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymptotic g modes: Evidence for a rapid rotation of the solar core

76   0   0.0 ( 0 )
 نشر من قبل Eric Fossat
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E. Fossat




اسأل ChatGPT حول البحث

We present the identification of very low frequency g modes in the asymptotic regime and two important parameters that have long been waited for: the core rotation rate, and the asymptotic equidistant period spacing of these g modes. The GOLF instrument on board the SOHO space observatory has provided two decades of full-disk helioseismic data. In the present study, we search for possible collective frequency modulations that are produced by periodic changes in the deep solar structure. Such modulations provide access to only very low frequency g modes, thus allowing statistical methods to take advantage of their asymptotic properties. For oscillatory periods in the range between 9 and nearly 48 hours, almost 100 g modes of spherical harmonic degree 1 and more than 100 g modes of degree 2 are predicted. They are not observed individually, but when combined, they unambiguouslyprovide their asymptotic period equidistance and rotational splittings, in excellent agreement with the requirements of the asymptotic approximations. Previously, p-mode helioseismology allowed the g-mode period equidistance parameter $P_0$ to be bracketed inside a narrow range, between approximately 34 and 35 minutes. Here, $P_0$ is measured to be 34 min 01 s, with a 1 s uncertainty. The previously unknown g-mode splittings have now been measured from a non-synodic reference with very high accuracy, and they imply a mean weighted rotation of 1277 $pm$ 10 nHz (9-day period) of their kernels, resulting in a rapid rotation frequency of 1644 $pm$ 23 nHz (period of one week) of the solar core itself, which is a factor 3.8 $pm$ 0.1 faster than the rotation of the radiative envelope. The g modes are known to be the keys to a better understanding of the structure and dynamics of the solar core. Their detection with these precise parameters will certainly stimulate a new era of research in this field.

قيم البحث

اقرأ أيضاً

Solar gravity modes (or g modes) -- oscillations of the solar interior for which buoyancy acts as the restoring force -- have the potential to provide unprecedented inference on the structure and dynamics of the solar core, inference that is not poss ible with the well observed acoustic modes (or p modes). The high amplitude of the g-mode eigenfunctions in the core and the evanesence of the modes in the convection zone make the modes particularly sensitive to the physical and dynamical conditions in the core. Owing to the existence of the convection zone, the g modes have very low amplitudes at photospheric levels, which makes the modes extremely hard to detect. In this paper, we review the current state of play regarding attempts to detect g modes. We review the theory of g modes, including theoretical estimation of the g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the techniques that have been used to try to detect g modes. We review results in the literature, and finish by looking to the future, and the potential advances that can be made -- from both data and data-analysis perspectives -- to give unambiguous detections of individual g modes. The review ends by concluding that, at the time of writing, there is indeed a consensus amongst the authors that there is currently no undisputed detection of solar g modes.
We present the observation of a major solar eruption that is associated with fast sunspot rotation. The event includes a sigmoidal filament eruption, a coronal mass ejection, and a GOES X2.1 flare from NOAA active region 11283. The filament and some overlying arcades were partially rooted in a sunspot. The sunspot rotated at $sim$10$^circ$ per hour rate during a period of 6 hours prior to the eruption. In this period, the filament was found to rise gradually along with the sunspot rotation. Based on the HMI observation, for an area along the polarity inversion line underneath the filament, we found gradual pre-eruption decreases of both the mean strength of the photospheric horizontal field ($B_h$) and the mean inclination angle between the vector magnetic field and the local radial (or vertical) direction. These observations are consistent with the pre-eruption gradual rising of the filament-associated magnetic structure. In addition, according to the Non-Linear Force-Free-Field reconstruction of the coronal magnetic field, a pre-eruption magnetic flux rope structure is found to be in alignment with the filament, and a considerable amount of magnetic energy was transported to the corona during the period of sunspot rotation. Our study provides evidences that in this event sunspot rotation plays an important role in twisting, energizing, and destabilizing the coronal filament-flux rope system, and led to the eruption. We also propose that the pre-event evolution of $B_h$ may be used to discern the driving mechanism of eruptions.
Aims. The Sun shows strong variability in its magnetic activity, from Grand minima to Grand maxima, but the nature of the variability is not fully understood, mostly because of the insufficient length of the directly observed solar activity records a nd of uncertainties related to long-term reconstructions. Here we present a new adjustment-free reconstruction of solar activity over three millennia and study its different modes. Methods. We present a new adjustment-free, physical reconstruction of solar activity over the past three millennia, using the latest verified carbon cycle, 14C production, and archeomagnetic field models. This great improvement allowed us to study different modes of solar activity at an unprecedented level of details. Results. The distribution of solar activity is clearly bi-modal, implying the existence of distinct modes of activity. The main regular activity mode corresponds to moderate activity that varies in a relatively narrow band between sunspot numbers about 20 and 67. The existence of a separate Grand minimum mode with reduced solar activity, which cannot be explained by random fluctuations of the regular mode, is confirmed at a high confidence level. The possible existence of a separate Grand maximum mode is also suggested, but the statistics is too low to reach a confident conclusion. Conclusions. The Sun is shown to operate in distinct modes - a main general mode, a Grand minimum mode corresponding to an inactive Sun, and a possible Grand maximum mode corresponding to an unusually active Sun. These results provide important constraints for both dynamo models of Sun-like stars and investigations of possible solar influence on Earths climate.
The relation of period spacing ($Delta P$) versus period ($P$) of dipole prograde g modes is known to be useful to measure rotation rates in the g-mode cavity of rapidly rotating $gamma$ Dor and slowly pulsating B (SPB) stars. In a rapidly rotating s tar, an inertial mode in the convective core can resonantly couple with g modes propagative in the surrounding radiative region. The resonant coupling causes a dip in the $P$-$Delta P$ relation, distinct from the modulations due to the chemical composition gradient. Such a resonance dip in $Delta P$ of prograde dipole g modes appears around a frequency corresponding to a spin parameter $2f_{rm rot}{rm(cc)}/ u_{rm co-rot} sim 8-11$ with $f_{rm rot}$(cc) being the rotation frequency of the convective core and $ u_{rm co-rot}$ the pulsation frequency in the co-rotating frame. The spin parameter at the resonance depends somewhat on the extent of core overshooting, central hydrogen abundance, and other stellar parameters. We can fit the period at the observed dip with the prediction from prograde dipole g modes of a main-sequence model, allowing the convective core to rotate differentially from the surrounding g-mode cavity. We have performed such fittings for 16 selected $gamma$ Dor stars having well defined dips, and found that the majority of $gamma$ Dor stars we studied rotate nearly uniformly, while convective cores tend to rotate slightly faster than the g-mode cavity in less evolved stars.
Using patterns in the oscillation frequencies of a white dwarf observed by K2, we have measured the fastest rotation rate, 1.13(02) hr, of any isolated pulsating white dwarf known to date. Balmer-line fits to follow-up spectroscopy from the SOAR tele scope show that the star (SDSSJ0837+1856, EPIC 211914185) is a 13,590(340) K, 0.87(03) solar-mass white dwarf. This is the highest mass measured for any pulsating white dwarf with known rotation, suggesting a possible link between high mass and fast rotation. If it is the product of single-star evolution, its progenitor was a roughly 4.0 solar-mass main-sequence B star; we know very little about the angular momentum evolution of such intermediate-mass stars. We explore the possibility that this rapidly rotating white dwarf is the byproduct of a binary merger, which we conclude is unlikely given the pulsation periods observed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا