ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular Hydrogen Formation on Astrophysically Relevant Surfaces

99   0   0.0 ( 0 )
 نشر من قبل Itay Furman
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent experimental results about the formation of molecular hydrogen on astrophysically relevant surfaces under conditions close to those encountered in the interstellar medium are analyzed using rate equations. The parameters of the rate equation model are fitted to temperature-programmed desorption curves obtained in the laboratory. These parameters are the activation energy barriers for atomic hydrogen diffusion and desorption, the barrier for molecular hydrogen desorption, and the probability of spontaneous desorption of a hydrogen molecule upon recombination. The model is a generalization of the Polanyi-Wigner equation and provides a description of both first and second order kinetic processes within a single model. Using the values of the parameters that fit best the experimental results, the efficiency of hydrogen recombination on olivine and amorphous carbon surfaces is obtained for a range of hydrogen flux and surface temperature pertinent to a wide range of interstellar conditions.



قيم البحث

اقرأ أيضاً

Experimental results on the formation of molecular hydrogen on amorphous silicate surfaces are presented and analyzed using a rate equation model. The energy barriers for the relevant diffusion and desorption processes are obtained. They turn out to be significantly higher than those obtained for polycrystalline silicates, demonstrating the importance of grain morphology. Using these barriers we evaluate the efficiency of molecular hydrogen formation on amorphous silicate grains under interstellar conditions. It is found that unlike polycrystalline silicates, amorphous silicate grains are efficient catalysts of H_2 formation in diffuse interstellar clouds.
109 - G. Vidali , V. Pirronello , L. Li 2008
The study of the formation of molecular hydrogen on low temperature surfaces is of interest both because it allows to explore elementary steps in the heterogeneous catalysis of a simple molecule and because of the applications in astrochemistry. Here we report results of experiments of molecular hydrogen formation on amorphous silicate surfaces using temperature-programmed desorption (TPD). In these experiments beams of H and D atoms are irradiated on the surface of an amorphous silicate sample. The desorption rate of HD molecules is monitored using a mass spectrometer during a subsequent TPD run. The results are analyzed using rate equations and the activation energies of the processes leading to molecular hydrogen formation are obtained from the TPD data. We show that a model based on a single isotope provides the correct results for the activation energies for diffusion and desorption of H atoms. These results can thus be used to evaluate the formation rate of H_2 on dust grains under the actual conditions present in interstellar clouds.
We review recent work on the photoionization of atomic ions of astrophysical interest that has been carried out at the photon-ion merged-beams setup PIPE, a permanently installed end station at the XUV beamline P04 of the PETRAIII synchrotron radiati on source operated by DESY in Hamburg, Germany. Our results on single and multiple L-shell photoionization of Fe+, Fe2+, and Fe3+ ions and on single and multiple K-shell photoionization of C-, C+, C4+, Ne+, and Si2+ ions are discussed in astrophysical contexts. Moreover, these experimental results bear witness of the fact, that the implementation of the photon-ion merged-beams method at one of the worlds brightest synchrotron light sources has led to a breakthrough for the experimental study of atomic inner-shell photoionization processes with ions.
62 - V.Pirronello , O.Biham , C.Liu 1997
We report on laboratory measurements of molecular hydrogen formation and recombination on an olivine slab as a function of surface temperature under conditions relevant to those encountered in the interstellar medium. On the basis of our experimental evidence, we recognize that there are two main regimes of H coverage that are of astrophysical importance; for each of them we provide an expression giving the production rate of molecular hydrogen in interstellar clouds.
126 - T. Suhasaria , J. D. Thrower , 2017
We present temperature programmed desorption (TPD) measurements of CO, CH$_4$, O$_2$ and CO$_2$ from the forsterite(010) surface in the sub-monolayer and multilayer coverage regimes. In the case of CO, CH$_4$ and O$_2$, multilayer growth begins prior to saturation of the monolayer peak, resulting in two clearly distinguishable desorption peaks. On the other hand a single peak for CO$_2$ is observed which shifts from high temperature at low coverage to low temperature at high coverages, sharpening upon multilayer formation. The leading edges are aligned for all the molecules in the multilayer coverage regime indicating zero order desorption. We have extracted multilayer desorption energies for these molecules using an Arrhenius analysis. For sub-monolayer coverages, we observe an extended desorption tail to higher temperature. Inversion analysis has been used to extract the coverage dependent desorption energies in the sub-monolayer coverage regime, from which we obtain the desorption energy distribution. We found that owing to the presence of multiple adsorption energy sites on the crystalline surface the typical desorption energies of these small molecules are significantly larger than obtained in previous measurements for several other substrates. Therefore molecules bound to crystalline silicate surfaces may remain locked in the solid state for a longer period of time before desorption into the gas phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا