ترغب بنشر مسار تعليمي؟ اضغط هنا

ISO spectroscopy of compact HII regions in the Galaxy. II Ionization and elemental abundances

67   0   0.0 ( 0 )
 نشر من قبل Leticia Martin
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on the ISO spectral catalogue of compact HII regions by Peeters et al. (2001), we present a first analysis of the hydrogen recombination and atomic fine-structure lines originated in the ionized gas. The sample consists of 34 HII regions located at galactocentric distances between Rgal = 0 and 15 kpc. The SWS HI recombination lines between 2 and 8 mum are used to estimate the extinction law at these wavelengths for 14 HII regions. An extinction in the K band between 0 and $sim$ 3 mag. has been derived. The fine-structure lines of N, O, Ne, S and Ar are detected in most of the sources. Most of these elements are observed in two different ionization stages probing a range in ionization potential up to 41 eV. The ISO data, by itself or combined with radio data taken from the literature, is used to derive the elemental abundances relative to hydrogen. The present data thus allow us to describe for each source its elemental abundance, its state of ionization and to constrain the properties of the ionizing star(s).



قيم البحث

اقرأ أيضاً

We present a study of elemental abundances in a sample of thirteen Blue Compact Dwarf (BCD) galaxies, using the $sim$10--37$mu$m high resolution spectra obtained with Spitzer/IRS. We derive the abundances of neon and sulfur for our sample using the i nfrared fine-structure lines probing regions which may be obscured by dust in the optical and compare our results with similar infrared studies of starburst galaxies from ISO. We find a good correlation between the neon and sulfur abundances, though sulfur is under-abundant relative to neon with respect to the solar value. A comparison of the elemental abundances (neon, sulfur) measured from the infrared data with those derived from the optical (neon, sulfur, oxygen) studies reveals a good overall agreement for sulfur, while the infrared derived neon abundances are slightly higher than the optical values. This indicates that either the metallicities of dust enshrouded regions in BCDs are similar to the optically accessible regions, or that if they are different they do not contribute substantially to the total infrared emission of the host galaxy.
108 - S. J. Arthur , M. G. Hoare 2005
We present numerical radiation-hydrodynamic simulations of cometary HII regions for a number of champagne flow and bowshock models. For the champagne flow models we study smooth density distributions with both steep and shallow gradients. We also con sider cases where the ionizing star has a strong stellar wind, and cases in which the star additionally has a proper motion within the ambient density gradient. We present simulated emission-measure maps and long-slit spectra of our results. Our numerical models are not tailored to any particular object but comparison with observations from the literature shows that, in particular, the models combining density gradients and stellar winds are able to account for both the morphology and radial velocity behavior of several observed cometary HII regions, such as the well-studied object G29.96-0.02.
134 - L. van Zee 1998
We present the results of low dispersion optical spectroscopy of 186 H II regions spanning a range of radius in 13 spiral galaxies. Abundances for several elements (oxygen, nitrogen, neon, sulfur, and argon) were determined for 185 of the H II region s. As expected, low metallicities were found for the outlying H II regions of these spiral galaxies. Radial abundance gradients were derived for the 11 primary galaxies; similar to results for other spiral galaxies, the derived abundance gradients are typically -0.04 to -0.07 dex/kpc.
570 - Kelsey E. Johnson 2001
We report on the detection of optically thick free-free radio sources in the galaxies M33, NGC 253, and NGC 6946 using data in the literature. We interpret these sources as being young, embedded star birth regions, which are likely to be clusters of ultracompact HII regions. All 35 of the sources presented in this article have positive radio spectral indices alpha>0 suggesting an optically thick thermal bremsstrahlung emission arising in the HII region surrounding hot stars. Energy requirements indicate a range of a several to >500 O7V star equivalents powering each HII region. Assuming a Salpeter IMF, this corresponds to integrated stellar masses of 0.1--60,000 Msun. For roughly half of the sources in our sample, there is no obvious optical counterpart, giving further support for their deeply embedded nature. Their luminosities and radio spectral energy distributions are consistent with HII regions having electron densities from 1500 cm^-3 to 15000 cm^-3 and radii of 1 - 7 pc. We suggest that the less luminous of these sources are extragalactic ultracompact HII region complexes, those of intermediate luminosity are similar to W49 in the Galaxy, while the brightest will be counterparts to 30 Doradus. These objects constitute the lower mass range of extragalactic ``ultradense HII regions which we argue are the youngest stages of massive star cluster formation yet observed. This sample is beginning to fill in the continuum of objects between small associations of ultracompact HII regions and the massive extragalactic clusters that may evolve into globular clusters.
High-quality K-band spectra of strongly reddened point sources, deeply embedded in (ultra-) compact HII regions, have revealed a population of 20 young massive stars showing no photospheric absorption lines, but sometimes strong Br-gamma emission. Th e Br-gamma equivalent widths occupy a wide range (from about 1 to over 100 A); the line widths of 100-200 km/s indicate a circumstellar rather than a nebular origin. The K-band spectra exhibit one or more features commonly associated with massive young stellar objects (YSOs) surrounded by circumstellar material: a very red colour (J-K) > 2, CO bandhead emission, hydrogen emission lines (sometimes doubly peaked), and FeII and/or MgII emission lines. The massive YSO distribution in the CMD suggests that the majority of the objects are of similar spectral type as the Herbig Be stars, but some of them are young O stars. The CO emission must come from a relatively dense (~10^{10} cm^{-3}) and hot (T~ 2000-5000 K) region, sufficiently shielded from the intense UV radiation field of the young massive star. The hydrogen emission is produced in an ionised medium exposed to UV radiation. The best geometrical solution is a dense and neutral circumstellar disk causing the CO bandhead emission, and an ionised upper layer where the hydrogen lines are produced. We present arguments that the circumstellar disk is more likely a remnant of the accretion process than the result of rapid rotation and mass loss such as in Be/B[e] stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا