ترغب بنشر مسار تعليمي؟ اضغط هنا

Stellar populations of Globular Clusters in the Elliptical galaxy NGC1407

170   0   0.0 ( 0 )
 نشر من قبل Javier Cenarro
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Javier Cenarro




اسأل ChatGPT حول البحث

We present high-quality, Keck spectroscopic data for a sample of 20 globular clusters (GCs) in the massive E0 galaxy NGC1407. A subset of twenty line-strength indices of the Lick/IDS system have been measured for both the GC system and the central integrated star-light of the galaxy. Ages, metallicities and [alpha/Fe] ratios have been derived using several different approaches. The majority GCs in NGC1407 studied are old, follow a tight metallicity sequence reaching values slightly above solar, and exhibit mean [alpha/Fe] ratios of ~ 0.3 dex. In addition, three GCs are formally derived to be young (~ 4 Gyr), but we argue that they are actually old GCs hosting blue horizontal branches. We report, for the first time, evidence for the existence of two chemically-distinct subpopulations of metal-rich (MR) GCs. We find some MR GCs exhibit significantly larger [Mg/Fe] and [C/Fe] ratios. Different star formation time-scales are proposed to explain the correlation between Mg and C abundances. We also find striking CN overabundances over the entire GC metallicity range. Interestingly, the behavior of C and N in metal-poor (MP) GCs clearly deviates from the one in MR GCs. In particular, for MR GCs, N increases dramatically while C essentially saturates. This may be interpreted as a consequence of the increasing importance of the CNO cycle with increasing metallicity.

قيم البحث

اقرأ أيضاً

We present a detailed stellar population analysis of 27 massive elliptical galaxies within 4 very rich clusters at redshift z~0.2: A115, A655, A963 and A2111. Using the new, high-resolution stellar populations models developed in our group, we obtain ed accurate estimates of the mean luminosity-weighted ages and relative abundances of CN, Mg and Fe. We have found that [CN/H] and [Mg/H] are correlated with sigma while [Fe/H] and Log(age) are not. In addition, both abundance ratios [CN/Fe] and [Mg/Fe] increase with sigma. Furthermore, the [CN/H]-sigma and [CN/Fe]-sigma slopes are steeper for galaxies in very rich clusters than those in the less dense Virgo and Coma clusters. On the other hand, [Mg/H]-sigma and [Mg/Fe]-sigma slopes keep constant as functions of the environment. Our results are compatible with a scenario in which the stellar populations of massive elliptical galaxies, independently of their environment and mass, had formation timescales shorter than ~1 Gyr. This result implies that massive elliptical galaxies have evolved passively since, at least, as long ago as z~2. For a given galaxy mass the duration of star formation is shorter in those galaxies belonging to more dense environments; whereas the mass-metallicity relation appears to be also a function of the cluster properties: the denser the environment is, the steeper are the correlations. Finally, we show that the abundance ratios [CN/Fe] and [Mg/Fe] are the key chemical clocks to infer the star formation history timescales in ellipticals. In particular, [Mg/Fe] provides an upper limit for those formation timescales, while [CN/Fe] apperars to be the most suitable parameter to resolve them in elliptical galaxies with sigma<300 km/s.
Evidence that the multiple populations (MPs) are common properties of globular clusters (GCs) is accumulated over the past decades from clusters in the Milky Way and in its satellites. This finding has revived GC research, and suggested that their fo rmation at high redshift must have been a much-more complex phenomenon than imagined before. However, most information on MPs is limited to nearby GCs. The main limitation is that most studies on MPs rely on resolved stars, facing a major challenge to investigate the MP phenomenon in distant galaxies. Here we search for integrated colors of old GCs that are sensitive to the multiple-population phenomenon. To do this, we exploit integrated magnitudes of simulated GCs with MPs, and multi-band Hubble Space Telescope photometry of 56 Galactic GCs, where MPs are widely studied, and characterized as part of the UV Legacy Survey of Galactic GCs. We find that both integrated $C_{rm F275W,F336W,F438W}$ and $m_{rm F275W}-m_{rm F814W}$ colors strongly correlate with the iron abundance of the host GC. In second order, the pseudo two-color diagram built with these integrated colors is sensitive to the MP phenomenon. In particular, once removed the dependence from cluster metallicity, the color residuals depend on the maximum internal helium variation within GCs and on the fraction of second-generation stars. This diagram, which we define here for Galactic GCs, has the potential of detecting and characterizing MPs from integrated photometry of old GCs, thus providing the possibility to extend their investigation outside the Local Group.
Recent discoveries of black hole (BH) candidates in Galactic and extragalactic globular clusters (GCs) have ignited interest in understanding how BHs dynamically evolve in a GC and the number of BHs ($N_{rm{BH}}$) that may still be retained by todays GCs. Numerical models show that even if stellar-mass BHs are retained in todays GCs, they are typically in configurations that are not directly detectable. We show that a suitably defined measure of mass segregation ($Delta$) between, e.g., giants and low-mass main-sequence stars, can be an effective probe to indirectly estimate $N_{rm{BH}}$ in a GC aided by calibrations from numerical models. Using numerical models including all relevant physics we first show that $N_{rm{BH}}$ is strongly anticorrelated with $Delta$ between giant stars and low-mass main-sequence stars. We apply the distributions of $Delta$ vs $N_{rm{BH}}$ obtained from models to three Milky Way GCs to predict the $N_{rm{BH}}$ retained by them at present. We calculate $Delta$ using the publicly available ACS survey data for 47 Tuc, M 10, and M 22, all with identified stellar-mass BH candidates. Using these measured $Delta$ and distributions of $Delta$ vs $N_{rm{BH}}$ from models as calibration we predict distributions for $N_{rm{BH}}$ expected to be retained in these GCs. For 47 Tuc, M 10, and M 22 our predicted distributions peak at $N_{rm{BH}}approx20$, $24$, and $50$, whereas, within the $2sigma$ confidence level, $N_{rm{BH}}$ can be up to $sim150$, $50$, and $200$, respectively.
We have calculated synthetic spectra for typical chemical element mixtures (i.e., a standard alpha-enhanced distribution, and distributions displaying CN and ONa anticorrelations) found in the various subpopulations harboured by Galactic globular clu sters. From the spectra we have determined bolometric corrections to the standard Johnson-Cousins and Stroemgren filters, and finally predicted colours. These bolometric corrections and colour-transformations, coupled to our theoretical isochrones with the appropriate chemical composition, provide a complete and self-consistent set of theoretical predictions for the effect of abundance variations on the observed cluster CMD. CNO abundance variations affect mainly wavelengths shorter than 400 nm, due to the arise of molecular absorption bands in cooler atmospheres. As a consequence, colour and magnitude changes are largest in the blue filters, independently of using broad or intermediate bandpasses. Colour-magnitude diagrams involving uvy and UB filters (and their various possible colour combinations) are thus the ones best suited to infer photometrically the presence of multiple stellar generations in individual clusters. They are particularly sensitive to variations in the N abundance, with the largest variations affecting the Red Giant Branch (RGB) and lower Main Sequence (MS). BVI diagrams are expected to display multiple sequences only if the different populations are characterized by variations of the C+N+O sum and helium abundance, that lead to changes in luminosity and effective temperature, but leave the flux distribution above 400 nm practically unaffected. A variation of just the helium abundance, up to the level we investigate here, affects exclusively the interior structure of stars, and is largely irrelevant for the atmospheric structure and the resulting flux distribution in the whole wavelength range spanned by our analysis.
The internal dynamics of multiple stellar populations in Globular Clusters (GCs) provides unique constraints on the physical processes responsible for their formation. Specifically, the present-day kinematics of cluster stars, such as rotation and ve locity dispersion, seems to be related to the initial configuration of the system. In recent work (Milone et al. 2018), we analyzed for the first time the kinematics of the different stellar populations in NGC0104 (47Tucanae) over a large field of view, exploiting the Gaia Data Release 2 proper motions combined with multi-band ground-based photometry. In this paper, based on the work by Cordoni et al. (2019), we extend this analysis to six GCs, namely NGC0288, NGC5904 (M5), NGC6121 (M4), NGC6752, NGC6838 (M71) and further explore NGC0104. Among the analyzed clusters only NGC0104 and NGC5904 show significant rotation on the plane of the sky. Interestingly, multiple stellar populations in NGC5904 exhibit different rotation curves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا