ﻻ يوجد ملخص باللغة العربية
We present a detailed stellar population analysis of 27 massive elliptical galaxies within 4 very rich clusters at redshift z~0.2: A115, A655, A963 and A2111. Using the new, high-resolution stellar populations models developed in our group, we obtained accurate estimates of the mean luminosity-weighted ages and relative abundances of CN, Mg and Fe. We have found that [CN/H] and [Mg/H] are correlated with sigma while [Fe/H] and Log(age) are not. In addition, both abundance ratios [CN/Fe] and [Mg/Fe] increase with sigma. Furthermore, the [CN/H]-sigma and [CN/Fe]-sigma slopes are steeper for galaxies in very rich clusters than those in the less dense Virgo and Coma clusters. On the other hand, [Mg/H]-sigma and [Mg/Fe]-sigma slopes keep constant as functions of the environment. Our results are compatible with a scenario in which the stellar populations of massive elliptical galaxies, independently of their environment and mass, had formation timescales shorter than ~1 Gyr. This result implies that massive elliptical galaxies have evolved passively since, at least, as long ago as z~2. For a given galaxy mass the duration of star formation is shorter in those galaxies belonging to more dense environments; whereas the mass-metallicity relation appears to be also a function of the cluster properties: the denser the environment is, the steeper are the correlations. Finally, we show that the abundance ratios [CN/Fe] and [Mg/Fe] are the key chemical clocks to infer the star formation history timescales in ellipticals. In particular, [Mg/Fe] provides an upper limit for those formation timescales, while [CN/Fe] apperars to be the most suitable parameter to resolve them in elliptical galaxies with sigma<300 km/s.
Chandras high angular resolution can resolve emission from stellar X-ray binaries out of the diffuse X-ray emission from gaseous atmospheres within elliptical galaxies. Variations in the X-ray binary populations (per unit galaxian optical luminosity)
We present high-quality, Keck spectroscopic data for a sample of 20 globular clusters (GCs) in the massive E0 galaxy NGC1407. A subset of twenty line-strength indices of the Lick/IDS system have been measured for both the GC system and the central in
We use deep surface photometry of the giant elliptical M49 (NGC 4472), obtained as part of our survey for diffuse light in the Virgo Cluster, to study the stellar populations in its outer halo. Our data trace M49s stellar halo out to ~ 100 kpc (7 Re)
We present UBVRI surface photometry for 16 dwarf elliptical galaxies in the Virgo Cluster with previously measured kinematic properties. The global optical colors are red, with median values for the sample of 0.24 +/- 0.03 in (U-B), 0.77 +/- 0.02 in
We are using optical/IR surface brightness fluctuations (SBFs) to validate the latest stellar population synthesis models and to understand the stellar populations of ellipticals. Integrated light and spectra measure only the first moment of the stel