ترغب بنشر مسار تعليمي؟ اضغط هنا

Grommet: an N-body code for high-resolution simulations of individual galaxies

55   0   0.0 ( 0 )
 نشر من قبل John Magorrian
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف John Magorrian




اسأل ChatGPT حول البحث

This paper presents a fast, economical particle-multiple-mesh N-body code optimized for large-N modelling of collisionless dynamical processes, such as black-hole wandering or bar-halo interactions, occurring within isolated galaxies. The code has been specially designed to conserve linear momentum. Despite this, it also has variable softening and an efficient block-timestep scheme: the force between any pair of particles is calculated using the finest mesh that encloses them both (respecting Newtons third law) and is updated only on the longest timestep of the two (which conserves momentum). For realistic galaxy models with N > 10^6, it is faster than the fastest comparable momentum-conserving tree code by a factor ranging from ~2 (using single timesteps) to ~10 (multiple timesteps in a concentrated galaxy).



قيم البحث

اقرأ أيضاً

300 - Tim W. Connors 2004
Hierarchical clustering represents the favoured paradigm for galaxy formation throughout the Universe; due to its proximity, the Magellanic system offers one of the few opportunities for astrophysicists to decompose the full six-dimensional phase-spa ce history of a satellite in the midst of being cannibalised by its host galaxy. The availability of improved observational data for the Magellanic Stream and parallel advances in computational power has led us to revisit the canonical tidal model describing the disruption of the Small Magellanic Cloud and the consequent formation of the Stream. We suggest improvements to the tidal model in light of these recent advances.
We describe a major upgrade of a Monte Carlo code which has previously been used for many studies of dense star clusters. We outline the steps needed in order to calibrate the results of the new Monte Carlo code against $N$-body simulations for large $N$ systems, up to $N=200000$. The new version of the Monte Carlo code (called MOCCA), in addition to the features of the old version, incorporates the direct Fewbody integrator (Fregeau et al. 2004) for three- and four-body interactions, and a new treatment of the escape process based on Fukushige & Heggie (2000). Now stars which fulfil the escape criterion are not removed immediately, but can stay in the system for a certain time which depends on the excess of the energy of a star above the escape energy. They are called potential escapers. With the addition of the Fewbody integrator the code can follow all interaction channels which are important for the rate of creation of various types of objects observed in star clusters, and ensures that the energy generation by binaries is treated in a manner similar to the $N$-body model. There are at most three new parameters which have to be adjusted against $N$-body simulations for large $N$: two (or one, depending on the chosen approach) connected with the escape process, and one responsible for the determination of the interaction probabilities. The values adopted for the free parameters have at most a weak dependence on $N$. They allow MOCCA to reproduce $N$-body results with reasonable precision, not only for the rate of cluster evolution and the cluster mass distribution, but also for the detailed distributions of mass and binding energy of binaries. Additionally, the code can follow the rate of formation of blue stragglers and black hole - black hole binaries.
We describe the numerical code N-MODY, a parallel particle-mesh code for collisionless N-body simulations in modified Newtonian dynamics (MOND). N-MODY is based on a numerical potential solver in spherical coordinates that solves the non-linear MOND field equation, and is ideally suited to simulate isolated stellar systems. N-MODY can be used also to compute the MOND potential of arbitrary static density distributions. A few applications of N-MODY indicate that some astrophysically relevant dynamical processes are profoundly different in MOND and in Newtonian gravity with dark matter.
We study the density structures of dark matter subhalos for both cold dark matter and self-interacting dark matter models using high-resolution cosmological $N$-body simulations. We quantify subhalos central density at 150 pc from the center of each subhalo at the classical dwarf spheroidal and ultrafaint dwarf scales. By comparing them with observations, we find that the self-interacting scattering cross-section of $sigma/m<3 rm{cm^{2}g^{-1}}$ is favored. Due to the combination of hosts tide and self-interactions, the central density of subhalos with small pericenter shows a noticeable difference between the cold and the self-interacting models, indicating that dwarf satellites with small pericenter are ideal sites to further constrain the nature of dark matter by future large spectroscopic surveys.
Recent improvements to GPU hardware and the symplectic N-body code GENGA allow for unprecedented resolution in simulations of planet formation. In this paper, we report results from high-resolution N-body simulations of terrestrial planet formation t hat are mostly direct continuation of our previous 10 Myr simulations (Woo et al. 2021a) until 150 Myr. By assuming that Jupiter and Saturn have always maintained their current eccentric orbits (EJS), we are able to achieve a reasonably good match to the current inner solar system architecture. However, due to the strong radial mixing that occurs in the EJS scenario, it has difficulties in explaining the known isotopic differences between bodies in the inner solar system, most notably between Earth and Mars. On the other hand, assuming initially circular orbits for Jupiter and Saturn (CJS) can reproduce the observed low degree of radial mixing in the inner solar system, while failing to reproduce the current architecture of the inner solar system. These outcomes suggest a possible paradox between dynamical structure and cosmochemical data for the terrestrial planets within the classical formation scenario.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا