ترغب بنشر مسار تعليمي؟ اضغط هنا

The terrestrial planet formation paradox inferred from high-resolution N-body simulations

179   0   0.0 ( 0 )
 نشر من قبل Jason Man Yin Woo
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent improvements to GPU hardware and the symplectic N-body code GENGA allow for unprecedented resolution in simulations of planet formation. In this paper, we report results from high-resolution N-body simulations of terrestrial planet formation that are mostly direct continuation of our previous 10 Myr simulations (Woo et al. 2021a) until 150 Myr. By assuming that Jupiter and Saturn have always maintained their current eccentric orbits (EJS), we are able to achieve a reasonably good match to the current inner solar system architecture. However, due to the strong radial mixing that occurs in the EJS scenario, it has difficulties in explaining the known isotopic differences between bodies in the inner solar system, most notably between Earth and Mars. On the other hand, assuming initially circular orbits for Jupiter and Saturn (CJS) can reproduce the observed low degree of radial mixing in the inner solar system, while failing to reproduce the current architecture of the inner solar system. These outcomes suggest a possible paradox between dynamical structure and cosmochemical data for the terrestrial planets within the classical formation scenario.

قيم البحث

اقرأ أيضاً

We investigated whether outward Planetesimal Driven Migration (PDM) takes place or not in simulations when the self gravity of planetesimals is included. We performed $N$-body simulations of planetesimal disks with large width (0.7 - 4AU) which range s over the ice line. The simulations consisted of two stages. The first stage simulations were carried out to see the runaway growth phase using the planetesimals of initially the same mass. The runaway growth took place both at the inner edge of the disk and at the region just outside the ice line. This result was utilized for the initial setup of the second stage simulations in which the runaway bodies just outside the ice line were replaced by the protoplanets with about the isolation mass. In the second stage simulations, the outward migration of the protoplanet was followed by the stopping of the migration due to the increase of the random velocity of the planetesimals. Due to this increase of random velocities, one of the PDM criteria derived in Minton and Levison (2014) was broken. In the current simulations, the effect of the gas disk is not considered. It is likely that the gas disk plays an important role in planetesimal driven migration, and we plan to study its effect in future papers.
The growth and composition of Earth is a direct consequence of planet formation throughout the Solar System. We discuss the known history of the Solar System, the proposed stages of growth and how the early stages of planet formation may be dominated by pebble growth processes. Pebbles are small bodies whose strong interactions with the nebula gas lead to remarkable new accretion mechanisms for the formation of planetesimals and the growth of planetary embryos. Many of the popular models for the later stages of planet formation are presented. The classical models with the giant planets on fixed orbits are not consistent with the known history of the Solar System, fail to create a high Earth/Mars mass ratio, and, in many cases, are also internally inconsistent. The successful Grand Tack model creates a small Mars, a wet Earth, a realistic asteroid belt and the mass-orbit structure of the terrestrial planets. In the Grand Tack scenario, growth curves for Earth most closely match a Weibull model. The feeding zones, which determine the compositions of Earth and Venus follow a particular pattern determined by Jupiter, while the feeding zones of Mars and Theia, the last giant impactor on Earth, appear to randomly sample the terrestrial disk. The late accreted mass samples the disk nearly evenly.
We investigate the formation of terrestrial planets in the late stage of planetary formation using two-planet model. At that time, the protostar has formed for about 3 Myr and the gas disk has dissipated. In the model, the perturbations from Jupiter and Saturn are considered. We also consider variations of the mass of outer planet, and the initial eccentricities and inclinations of embryos and planetesimals. Our results show that, terrestrial planets are formed in 50 Myr, and the accretion rate is about $60% - 80%$. In each simulation, 3 - 4 terrestrial planets are formed inside Jupiter with masses of $0.15 - 3.6 M_{oplus}$. In the $0.5 - 4$ AU, when the eccentricities of planetesimals are excited, planetesimals are able to accrete material from wide radial direction. The plenty of water material of the terrestrial planet in the Habitable Zone may be transferred from the farther places by this mechanism. Accretion could also happen a few times between two major planets only if the outer planet has a moderate mass and the small terrestrial planet could survive at some resonances over time scale of $10^8$ yr. In one of our simulations, com-mensurability of the orbital periods of planets is very common. Moreover, a librating-circulating 3:2 configuration of mean motion resonance is found.
The planetary building blocks that formed in the terrestrial planet region were likely very dry, yet water is comparatively abundant on Earth. We review the various mechanisms proposed for the origin of water on the terrestrial planets. Various in-si tu mechanisms have been suggested, which allow for the incorporation of water into the local planetesimals in the terrestrial planet region or into the planets themselves from local sources, although all of those mechanisms have difficulties. Comets have also been proposed as a source, although there may be problems fitting isotopic constraints, and the delivery efficiency is very low, such that it may be difficult to deliver even a single Earth ocean of water this way. The most promising route for water delivery is the accretion of material from beyond the snow line, similar to carbonaceous chondrites, that is scattered into the terrestrial planet region as the planets are growing. Two main scenarios are discussed in detail. First is the classical scenario in which the giant planets begin roughly in their final locations and the disk of planetesimals and embryos in the terrestrial planet region extends all the way into the outer asteroid belt region. Second is the Grand Tack scenario, where early inward and outward migration of the giant planets implants material from beyond the snow line into the asteroid belt and terrestrial planet region, where it can be accreted by the growing planets. Sufficient water is delivered to the terrestrial planets in both scenarios. While the Grand Tack scenario provides a better fit to most constraints, namely the small mass of Mars, planets may form too fast in the nominal case discussed here. This discrepancy may be reduced as a wider range of initial conditions is explored. Finally, we discuss several more recent models that may have important implications for water delivery to the terrestrial planets.
Recent observational results show that very low mass stars and brown dwarfs are able to host close-in rocky planets. Low-mass stars are the most abundant stars in the Galaxy and the formation efficiency of their planetary systems is relevant in the c omputation of a global probability of finding Earth-like planets inside habitable zones. Tidal forces and relativistic effects are relevant in the latest dynamical evolution of planets around low-mass stars and their effect on the planetary formation efficiency still needs to be addressed. Our goal is to evaluate the impact of tidal forces and relativistic effects on the formation of rocky planets around a star close to the substellar mass limit, in terms of the resulting planetary architectures and its distribution according to the corresponding evolving habitable zone. Thus, we performed a set of $N$-body simulations spanning the first 100~Myr of the evolution of two systems composed respectively by 224 embryos with a total mass 0.25M$_oplus$ and 74 embryos with a total mass 3 M$_oplus$ around a central object of 0.08~M$_odot$. For these two scenarios, we compared the planetary architectures that result from simulations that are purely gravitational with those from simulations that include the early contraction and spin-up of the central object, the distortions and dissipation tidal terms and general relativistic effects. We found that including these effects allows the formation and survival of a close-in population located in the habitable zone of the system. This means that both effects are relevant during the formation of rocky planets and their early evolution around stars close to the substellar mass limit, in particular when low-mass planetary embryos are involved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا