ﻻ يوجد ملخص باللغة العربية
We study the density structures of dark matter subhalos for both cold dark matter and self-interacting dark matter models using high-resolution cosmological $N$-body simulations. We quantify subhalos central density at 150 pc from the center of each subhalo at the classical dwarf spheroidal and ultrafaint dwarf scales. By comparing them with observations, we find that the self-interacting scattering cross-section of $sigma/m<3 rm{cm^{2}g^{-1}}$ is favored. Due to the combination of hosts tide and self-interactions, the central density of subhalos with small pericenter shows a noticeable difference between the cold and the self-interacting models, indicating that dwarf satellites with small pericenter are ideal sites to further constrain the nature of dark matter by future large spectroscopic surveys.
Self-interacting dark matter (SIDM) models have the potential to solve the small-scale problems that arise in the cold dark matter paradigm. Simulations are a powerful tool for studying SIDM in the context of astrophysics, but it is numerically chall
Self-interacting dark matter (SIDM) models offer one way to reconcile inconsistencies between observations and predictions from collisionless cold dark matter (CDM) models on dwarf-galaxy scales. In order to incorporate the effects of both baryonic a
Self-Interacting Dark Matter is an attractive alternative to the Cold Dark Matter paradigm only if it is able to substantially reduce the central densities of dwarf-size haloes while keeping the densities and shapes of cluster-size haloes within curr
We demonstrate that testing for self-similarity in scale-free simulations provides an excellent tool to quantify the resolution at small scales of cosmological N-body simulations. Analysing two-point correlation functions measured in simulations usin
We use cosmological simulations to study the effects of self-interacting dark matter (SIDM) on the density profiles and substructure counts of dark matter halos from the scales of spiral galaxies to galaxy clusters, focusing explicitly on models with