ترغب بنشر مسار تعليمي؟ اضغط هنا

The Massive Hosts of Radio Galaxies Across Cosmic Time

424   0   0.0 ( 0 )
 نشر من قبل Nick Seymour
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Nick Seymour




اسأل ChatGPT حول البحث

We present the results of a comprehensive Spitzer survey of 69 radio galaxies across 1<z<5.2. Using IRAC (3.6-8.0um), IRS (16um) and MIPS (24-160um) imaging, we decompose the rest-frame optical to infrared spectral energy distributions into stellar, AGN, and dust components and determine the contribution of host galaxy stellar emission at rest-frame H-band. Stellar masses derived from rest-frame near-IR data, where AGN and young star contributions are minimized, are significantly more reliable than those derived from rest-frame optical and UV data. We find that the fraction of emitted light at rest-frame H-band from stars is >60% for ~75% the high redshift radio galaxies. As expected from unified models of AGN, the stellar fraction of the rest-frame H-band luminosity has no correlation with redshift, radio luminosity, or rest-frame mid-IR (5um) luminosity. Additionally, while the stellar H-band luminosity does not vary with stellar fraction, the total H-band luminosity anti-correlates with the stellar fraction as would be expected if the underlying hosts of these radio galaxies comprise a homogeneous population. The resultant stellar luminosities imply stellar masses of 10^{11-11.5}Msun even at the highest redshifts. Powerful radio galaxies tend to lie in a similar region of mid-IR color-color space as unobscured AGN, despite the stellar contribution to their mid-IR SEDs at shorter-wavelengths. The mid-IR luminosities alone classify most HzRGs as LIRGs or ULIRGs with even higher total-IR luminosities. As expected, these exceptionally high mid-IR luminosities are consistent with an obscured, highly-accreting AGN. We find a weak correlation of stellar mass with radio luminosity.



قيم البحث

اقرأ أيضاً

We present predictions for the evolution of radio emission from Active Galactic Nuclei (AGNs). We use a model that follows the evolution of Supermassive Black Hole (SMBH) masses and spins, within the latest version of the GALFORM semi-analytic model of galaxy formation. We use a Blandford-Znajek type model to calculate the power of the relativistic jets produced by black hole accretion discs, and a scaling model to calculate radio luminosities. First, we present the predicted evolution of the jet power distribution, finding that this is dominated by objects fuelled by hot halo accretion and an ADAF accretion state for jet powers above $10^{32}mathrm{W}$ at $z=0$, with the contribution from objects fuelled by starbursts and in a thin disc accretion state being more important for lower jet powers at $z=0$ and at all jet powers at high redshifts ($zgeq3$). We then present the evolution of the jet power density from the model. The model is consistent with current observational estimates of jet powers from radio luminosities, once we allow for the significant uncertainties in these observational estimates. Next, we calibrate the model for radio emission to a range of observational estimates of the $z=0$ radio luminosity function. We compare the evolution of the model radio luminosity function to observational estimates for $0<z<6$, finding that the predicted evolution is similar to that observed. Finally, we explore recalibrating the model to reproduce luminosity functions of core radio emission, finding that the model is in approximate agreement with the observations.
We combine cosmological hydrodynamic simulations with analytic models to evaluate the role of galaxy-scale gravitational torques on the evolution of massive black holes at the centers of star-forming galaxies. We confirm and extend our earlier result s to show that torque-limited growth yields black holes and host galaxies evolving on average along the Mbh-Mbulge relation from early times down to z = 0 and that convergence onto the scaling relation occurs independent of the initial conditions and with no need for mass averaging through mergers or additional self-regulation processes. Smooth accretion dominates the long-term evolution, with black hole mergers with mass ratios >1:5 representing typically a small fraction of the total growth. Winds from the accretion disk are required to eject significant mass to suppress black hole growth, but there is no need for coupling this wind to galactic-scale gas to regulate black holes in a non-linear feedback loop. Torque-limited growth yields a close-to-linear relation for the star formation rate and the black hole accretion rate averaged over galaxy evolution time scales. However, the SFR-AGN connection has significant scatter owing to strong variability of black hole accretion at all resolved time scales. Eddington ratios can be described by a broad lognormal distribution with median value evolving roughly as (1 + z)^1.9, suggesting a main sequence for black hole growth similar to the cosmic evolution of specific SFRs. Our results offer an attractive scenario consistent with available observations in which cosmological gas infall and transport of angular momentum in the galaxy by gravitational instabilities regulate the long-term co-evolution of black holes and star-forming galaxies.
135 - F. J. Lockman , J. Ott 2009
Studies of nearby galaxies including the Milky Way have provided fundamental information on the evolution of structure in the Universe, the existence and nature of dark matter, the origin and evolution of galaxies, and the global features of star for mation. Yet despite decades of work, many of the most basic aspects of galaxies and their environments remain a mystery. In this paper we describe some outstanding problems in this area and the ways in which large radio facilities will contribute to further progress.
We study the dust evolution in galaxies by implementing a detailed dust prescription in the SAGE semi-analytical model for galaxy formation. The new model, called Dusty SAGE, follows the condensation of dust in the ejecta of type II supernovae and as ymptotic giant branch (AGB) stars, grain growth in the dense molecular clouds, destruction by supernovae shocks, and the removal of dust from the ISM by star formation, reheating, inflows and outflows. Our model successfully reproduces the observed dust mass function at redshift z = 0 and the observed scaling relations for dust across a wide range of redshifts. We find that the dust mass content in the present Universe is mainly produced via grain growth in the interstellar medium (ISM). By contrast, in the early Universe, the primary production mechanism for dust is the condensation in stellar ejecta. The shift of the significant production channel for dust characterises the scaling relations of dust-to-gas (DTG) and dust-to-metal (DTM) ratios. In galaxies where the grain growth dominates, we find positive correlations for DTG and DTM ratios with both metallicity and stellar mass. On the other hand, in galaxies where dust is produced primarily via condensation, we find negative or no correlation for DTM and DTG ratios with either metallicity or stellar mass. In agreement with observation showing that the circumgalactic medium (CGM) contains more dust than the ISM, our model also shows the same trend for z < 4. Our semi-analytic model is publicly available at https: //github.com/dptriani/dusty-sage.
Current galaxy observations suggest that a roughly linear correlation exists between the [CII] emission and the star formation rate, either as spatially-resolved or integrated quantities. Observationally, this correlation seems to be independent of m etallicity, but the very large scatter does not allow to properly assess whether this is true. On the other hand, theoretical models tend to suggest a metallicity dependence of the correlation. In this study, we investigate the metallicity evolution of the correlation via a high-resolution zoom-in cosmological simulation of a dwarf galaxy employing state-of-the-art sub-grid modelling for gas cooling, star formation, and stellar feedback, and that self-consistently evolves the abundances of metal elements out of equilibrium. Our results suggest that the correlation should evolve with metallicity, in agreement with theoretical predictions, but also that this evolution can be hardly detected in observations, because of the large scatter. We also find that most of the [CII] emission is associated with neutral gas at low-intermediate densities, whereas the highest emissivity is produced by the densest regions around star-forming regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا