ﻻ يوجد ملخص باللغة العربية
Current galaxy observations suggest that a roughly linear correlation exists between the [CII] emission and the star formation rate, either as spatially-resolved or integrated quantities. Observationally, this correlation seems to be independent of metallicity, but the very large scatter does not allow to properly assess whether this is true. On the other hand, theoretical models tend to suggest a metallicity dependence of the correlation. In this study, we investigate the metallicity evolution of the correlation via a high-resolution zoom-in cosmological simulation of a dwarf galaxy employing state-of-the-art sub-grid modelling for gas cooling, star formation, and stellar feedback, and that self-consistently evolves the abundances of metal elements out of equilibrium. Our results suggest that the correlation should evolve with metallicity, in agreement with theoretical predictions, but also that this evolution can be hardly detected in observations, because of the large scatter. We also find that most of the [CII] emission is associated with neutral gas at low-intermediate densities, whereas the highest emissivity is produced by the densest regions around star-forming regions.
We study the dust evolution in galaxies by implementing a detailed dust prescription in the SAGE semi-analytical model for galaxy formation. The new model, called Dusty SAGE, follows the condensation of dust in the ejecta of type II supernovae and as
Studies of nearby galaxies including the Milky Way have provided fundamental information on the evolution of structure in the Universe, the existence and nature of dark matter, the origin and evolution of galaxies, and the global features of star for
We analyze 88 independent high-resolution cosmological zoom-in simulations of disk galaxies in the NIHAO simulations suite to explore the connection between the atomic gas fraction and angular momentum of baryons throughout cosmic time. The study is
The [CII] 158 micron line is one of the strongest IR emission lines, which has been shown to trace the star-formation rate (SFR) of galaxies in the nearby Universe and up to $z sim 2$. Whether this is also the case at higher redshift and in the early
We present predictions for the evolution of radio emission from Active Galactic Nuclei (AGNs). We use a model that follows the evolution of Supermassive Black Hole (SMBH) masses and spins, within the latest version of the GALFORM semi-analytic model