ترغب بنشر مسار تعليمي؟ اضغط هنا

Torque-Limited Growth of Massive Black Holes in Galaxies Across Cosmic Time

124   0   0.0 ( 0 )
 نشر من قبل Daniel Angl\\'es-Alc\\'azar
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We combine cosmological hydrodynamic simulations with analytic models to evaluate the role of galaxy-scale gravitational torques on the evolution of massive black holes at the centers of star-forming galaxies. We confirm and extend our earlier results to show that torque-limited growth yields black holes and host galaxies evolving on average along the Mbh-Mbulge relation from early times down to z = 0 and that convergence onto the scaling relation occurs independent of the initial conditions and with no need for mass averaging through mergers or additional self-regulation processes. Smooth accretion dominates the long-term evolution, with black hole mergers with mass ratios >1:5 representing typically a small fraction of the total growth. Winds from the accretion disk are required to eject significant mass to suppress black hole growth, but there is no need for coupling this wind to galactic-scale gas to regulate black holes in a non-linear feedback loop. Torque-limited growth yields a close-to-linear relation for the star formation rate and the black hole accretion rate averaged over galaxy evolution time scales. However, the SFR-AGN connection has significant scatter owing to strong variability of black hole accretion at all resolved time scales. Eddington ratios can be described by a broad lognormal distribution with median value evolving roughly as (1 + z)^1.9, suggesting a main sequence for black hole growth similar to the cosmic evolution of specific SFRs. Our results offer an attractive scenario consistent with available observations in which cosmological gas infall and transport of angular momentum in the galaxy by gravitational instabilities regulate the long-term co-evolution of black holes and star-forming galaxies.



قيم البحث

اقرأ أيضاً

One of the main themes in extragalactic astronomy for the next decade will be the evolution of galaxies over cosmic time. Many future observatories, including JWST, ALMA, GMT, TMT and E-ELT will intensively observe starlight over a broad redshift ran ge, out to the dawn of the modern Universe when the first galaxies formed. It has, however, become clear that the properties and evolution of galaxies are intimately linked to the growth of their central black holes. Understanding the formation of galaxies, and their subsequent evolution, will therefore be incomplete without similarly intensive observations of the accretion light from supermassive black holes (SMBH) in galactic nuclei. To make further progress, we need to chart the formation of typical SMBH at z>6, and their subsequent growth over cosmic time, which is most effectively achieved with X-ray observations. Recent technological developments in X-ray optics and instrumentation now bring this within our grasp, enabling capabilities fully matched to those expected from flagship observatories at longer wavelengths.
315 - D.M. Alexander 2009
It is well established that a dominant phase in the growth of massive galaxies occurred at high redshift and was heavily obscured by gas and dust. Many studies have explored the stellar growth of massive galaxies but few have combined these constrain ts with the growth of the supermassive black hole (SMBH; i.e., identified as AGN activity). In this brief contribution we highlight our work aimed at identifying AGNs in z~2 luminous dust-obscured galaxies. Using both sensitive X-ray and infrared (IR)-submillimeter (submm) observations, we show that AGN activity is common in z~2 dust-obscured systems. With a variety of techniques we have found that the majority of the AGN activity is heavily obscured, and construct diagnostics based on X-ray-IR data to identify some of the most heavily obscured AGNs in the Universe (i.e., AGNs obscured by Compton-thick material; N_H>1.5x10^24 cm^-2). On the basis of these techniques we show that SMBH growth was typically heavily obscured (N_H>10^23 cm^-2) at z~2, and find that the growth of the SMBH and spheroid was closely connected, even in the most rapidly evolving systems.
We investigate the abundance of Super-Massive Black Hole (SMBH) seeds in primordial galaxy halos. We explore the assumption that dark matter halos outgrowing a critical halo mass M_c have some probability p of having spawned a SMBH seed. Current obse rvations of local, intermediate-mass galaxies constrain these parameters: For $M_c=10^{11}M_odot$, all halos must be seeded, but when adopting smaller M_c masses the seeding can be much less efficient. The constraints also put lower limits on the number density of black holes in the local and high-redshift Universe. Reproducing z~6 quasar space densities depends on their typical halo mass, which can be constrained by counting nearby Lyman Break Galaxies and Lyman Alpha Emitters. For both observables, our simulations demonstrate that single-field predictions are too diverse to make definitive statements, in agreement with mixed claims in the literature. If quasars are not limited to the most massive host halos, they may represent a tiny fraction (~10^-5) of the SMBH population. Finally, we produce a wide range of predictions for gravitational events from SMBH mergers. We define a new diagnostic diagram for LISA to measure both SMBH space density and the typical delay between halo merger and black hole merger. While previous works have explored specific scenarios, our results hold independent of the seed mechanism, seed mass, obscuration, fueling methods and duty cycle.
134 - F. J. Lockman , J. Ott 2009
Studies of nearby galaxies including the Milky Way have provided fundamental information on the evolution of structure in the Universe, the existence and nature of dark matter, the origin and evolution of galaxies, and the global features of star for mation. Yet despite decades of work, many of the most basic aspects of galaxies and their environments remain a mystery. In this paper we describe some outstanding problems in this area and the ways in which large radio facilities will contribute to further progress.
94 - M. Colpi , M. Dotti 2009
Binary black holes occupy a special place in our quest for understanding the evolution of galaxies along cosmic history. If massive black holes grow at the center of (pre-)galactic structures that experience a sequence of merger episodes, then dual b lack holes form as inescapable outcome of galaxy assembly. But, if the black holes reach coalescence, then they become the loudest sources of gravitational waves ever in the universe. Nature seems to provide a pathway for the formation of these exotic binaries, and a number of key questions need to be addressed: How do massive black holes pair in a merger? Depending on the properties of the underlying galaxies, do black holes always form a close Keplerian binary? If a binary forms, does hardening proceed down to the domain controlled by gravitational wave back reaction? What is the role played by gas and/or stars in braking the black holes, and on which timescale does coalescence occur? Can the black holes accrete on flight and shine during their pathway to coalescence? N-Body/hydrodynamical codes have proven to be vital tools for studying their evolution, and progress in this field is expected to grow rapidly in the effort to describe, in full realism, the physics of stars and gas around the black holes, starting from the cosmological large scale of a merger. If detected in the new window provided by the upcoming gravitational wave experiments, binary black holes will provide a deep view into the process of hierarchical clustering which is at the heart of the current paradigm of galaxy formation. They will also be exquisite probes for testing General Relativity, as the theory of gravity. The waveforms emitted during the inspiral, coalescence and ring-down phase carry in their shape the sign of a dynamically evolving space-time and the proof of the existence of an horizon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا