ترغب بنشر مسار تعليمي؟ اضغط هنا

Statistics of X-ray observables for the cooling-core and non-cooling core galaxy clusters

61   0   0.0 ( 0 )
 نشر من قبل Yong Chen
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a statistical study of the occurrence and effects of the cooling cores in the clusters of galaxies in a flux-limited sample, HIFLUGCS, based on ROSAT and ASCA observations. About 49% of the clusters in this sample have a significant, classically-calculated cooling-flow, mass-deposition rate. The upper envelope of the derived mass-deposition rate is roughly proportional to the cluster mass, and the fraction of cooling core clusters is found to decrease with it. The cooling core clusters are found to have smaller core radii than non-cooling core clusters, while some non-cooling core clusters have high $beta$ values (> 0.8). In the relation of the X-ray luminosity vs. the temperature and the mass, the cooling core clusters show a significantly higher normalization. A systematic correlation analysis, also involving relations of the gas mass and the total infrared luminosity, indicates that this bias is shown to be mostly due to an enhanced X-ray luminosity for cooling core clusters, while the other parameters, like temperature, mass, and gas mass may be less affected by the occurrence of a cooling core. These results may be explained by at least some of the non-cooling core clusters being in dynamically young states compared with cooling core clusters, and they may turn into cooling core clusters in a later evolutionary stage.


قيم البحث

اقرأ أيضاً

We present the analysis of XMM-Newton observations of two X-ray luminous cool core clusters, RXCJ1504.1-0248 and Abell 1664. The Reflection Grating Spectrometer reveals a radiative cooling rate of $180pm 40, rm M_{odot}rm,yr^{-1}$ and $34pm 6, rm M_{ odot}rm,yr^{-1}$ in RXCJ1504.1-0248 and Abell 1664 for gas above 0.7 keV, respectively. These cooling rates are higher than the star formation rates observed in the clusters, and support simultaneous star formation and molecular gas mass growth on a timescale of 3$times 10^8$ yr or longer. At these rates, the energy of the X-ray cooling gas is inadequate to power the observed UV/optical line-emitting nebulae, which suggests additional strong heating. No significant residual cooling is detected below 0.7 keV in RXCJ1504.1-0248. By simultaneously fitting the first and second order spectra, we place an upper limit on turbulent velocity of 300 km$rm s^{-1}$ at 90 per cent confidence level for the soft X-ray emitting gas in both clusters. The turbulent energy density is considered to be less than 8.9 and 27 per cent of the thermal energy density in RXCJ1504.1-0248 and Abell 1664, respectively. This means it is insufficient for AGN heating to fully propagate throughout the cool core via turbulence. We find the cool X-ray component of Abell 1664 ($sim$0.8 keV) is blueshifted from the systemic velocity by 750$^{+800}_{-280}$ km$rm s^{-1}$. This is consistent with one component of the molecular gas in the core and suggests a similar dynamical structure for the two phases. We find that an intrinsic absorption model allows the cooling rate to increase to $520pm 30, rm M_{odot}rm,yr^{-1}$ in RXCJ1504.1-0248.
We present the first results from a new, deep (200ks) Chandra observation of the X-ray luminous galaxy cluster surrounding the powerful (L ~10^47 erg/s), high-redshift (z=1.067), compact-steep-spectrum radio-loud quasar 3C186. The diffuse X-ray emiss ion from the cluster has a roughly ellipsoidal shape and extends out to radii of at least ~60 arcsec (~500 kpc). The centroid of the diffuse X-ray emission is offset by 0.68(+/-0.11) arcsec (5.5+/-0.9 kpc) from the position of the quasar. We measure a cluster mass within the radius at which the mean enclosed density is 2500 times the critical density, r_2500=283(+18/-13)kpc, of 1.02 (+0.21/-0.14)x10^14 M_sun. The gas mass fraction within this radius is f_gas=0.129(+0.015/-0.016). This value is consistent with measurements at lower redshifts and implies minimal evolution in the f_gas(z) relation for hot, massive clusters at 0<z<1.1. The measured metal abundance of 0.42(+0.08/-0.07) Solar is consistent with the abundance observed in other massive, high redshift clusters. The spatially-resolved temperature profile for the cluster shows a drop in temperature, from kT~8 keV to kT~3 keV, in its central regions that is characteristic of cooling core clusters. This is the first spectroscopic identification of a cooling core cluster at z>1. We measure cooling times for the X-ray emitting gas at radii of 50 kpc and 25 kpc of 1.7(+/-0.2)x10^9 years and 7.5(+/-2.6)x 10^8 years, as well as a nominal cooling rate (in the absence of heating) of 400(+/-190)M_sun/year within the central 100 kpc. In principle, the cooling gas can supply enough fuel to support the growth of the supermassive black hole and to power the luminous quasar. The radiative power of the quasar exceeds by a factor of 10 the kinematic power of the central radio source, suggesting that radiative heating may be important at intermittent intervals in cluster cores.
A CHANDRA follow-up observation of an X-ray luminous galaxy cluster with a compact appearance, RXCJ1504.1-0248 discovered in our REFLEX Cluster Survey, reveals an object with one of the most prominent cluster cooling cores. With a core radius of ~30 kpc smaller than the cooling radius with ~140 kpc more than 70% of the high X-ray luminosity of Lbol = 4.3 10e45 erg s-1 of this cluster is radiated inside the cooling radius. A simple modeling of the X-ray morphology of the cluster leads to a formal mass deposition rate within the classical cooling flow model of 1500 - 1900 Msun yr-1 (for h=0.7), and 2300 - 3000 Msun yr-1 (for h=0.5). The center of the cluster is marked by a giant elliptical galaxy which is also a known radio source. Thus it is very likely that we observe one of the interaction systems where the central cluster AGN is heating the cooling core region in a self-regulated way to prevent a massive cooling of the gas, similar to several such cases studied in detail in more nearby clusters. The interest raised by this system is then due to the high power recycled in RXCJ1504-0248 over cooling time scales which is about one order of magnitude higher than what occurs in the studied, nearby cooling core clusters. The cluster is also found to be very massive, with a global X-ray temperature of about 10.5 keV and a total mass of about 1.7 10e15 Msun inside 3 Mpc.
439 - Fabian Heitsch 2007
We study numerically the formation of molecular clouds in large-scale colliding flows including self-gravity. The models emphasize the competition between the effects of gravity on global and local scales in an isolated cloud. Global gravity builds u p large-scale filaments, while local gravity -- triggered by a combination of strong thermal and dynamical instabilities -- causes cores to form. The dynamical instabilities give rise to a local focusing of the colliding flows, facilitating the rapid formation of massive protostellar cores of a few 100 M$_odot$. The forming clouds do not reach an equilibrium state, though the motions within the clouds appear comparable to ``virial. The self-similar core mass distributions derived from models with and without self-gravity indicate that the core mass distribution is set very early on during the cloud formation process, predominantly by a combination of thermal and dynamical instabilities rather than by self-gravity.
86 - Jack O. Burns 2006
Why do some clusters have cool cores while others do not? In this paper, cosmological simulations, including radiative cooling and heating, are used to examine the formation and evolution of cool core (CC) and non-cool core (NCC) clusters. Numerical CC clusters at z=0 accreted mass more slowly over time and grew enhanced cool cores via hierarchical mergers; when late major mergers occurred, the CCs survived the collisions. By contrast, NCC clusters of similar mass experienced major mergers early in their evolution that destroyed embryonic cool cores and produced conditions that prevent CC re-formation. We discuss observational consequences.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا