ﻻ يوجد ملخص باللغة العربية
A CHANDRA follow-up observation of an X-ray luminous galaxy cluster with a compact appearance, RXCJ1504.1-0248 discovered in our REFLEX Cluster Survey, reveals an object with one of the most prominent cluster cooling cores. With a core radius of ~30 kpc smaller than the cooling radius with ~140 kpc more than 70% of the high X-ray luminosity of Lbol = 4.3 10e45 erg s-1 of this cluster is radiated inside the cooling radius. A simple modeling of the X-ray morphology of the cluster leads to a formal mass deposition rate within the classical cooling flow model of 1500 - 1900 Msun yr-1 (for h=0.7), and 2300 - 3000 Msun yr-1 (for h=0.5). The center of the cluster is marked by a giant elliptical galaxy which is also a known radio source. Thus it is very likely that we observe one of the interaction systems where the central cluster AGN is heating the cooling core region in a self-regulated way to prevent a massive cooling of the gas, similar to several such cases studied in detail in more nearby clusters. The interest raised by this system is then due to the high power recycled in RXCJ1504-0248 over cooling time scales which is about one order of magnitude higher than what occurs in the studied, nearby cooling core clusters. The cluster is also found to be very massive, with a global X-ray temperature of about 10.5 keV and a total mass of about 1.7 10e15 Msun inside 3 Mpc.
We present multi-wavelength observations of the centre of RXCJ1504.1-0248 - the galaxy cluster with the most luminous and relatively nearby cool core at z~0.2. Although there are several galaxies within 100 kpc of the cluster core, only the brightest
We present the analysis of XMM-Newton observations of two X-ray luminous cool core clusters, RXCJ1504.1-0248 and Abell 1664. The Reflection Grating Spectrometer reveals a radiative cooling rate of $180pm 40, rm M_{odot}rm,yr^{-1}$ and $34pm 6, rm M_{
We report on the properties of the most massive ultra-compact dwarf galaxy (UCD) in the nearby Virgo Cluster of galaxies using imaging from the Next Generation Virgo Cluster Survey (NGVS) and spectroscopy from Keck/DEIMOS. This object (M59-UCD3) appe
Using ISAAC/VLT, we have obtained individual spectra of all NIR-bright stars in the central 2x2 of the cluster Westerlund 1 (Wd 1) with a resolution of R~9000 at a central wavelength of 2.30 micron. This allowed us to determine radial velocities of t
We study a sample composed of 28 of the brightest stars in the Arches cluster. We analyze K-band spectra obtained with the integral field spectrograph SINFONI on the VLT. Atmosphere models computed with the code CMFGEN are used to derive the effectiv