ﻻ يوجد ملخص باللغة العربية
We present the first results from a new, deep (200ks) Chandra observation of the X-ray luminous galaxy cluster surrounding the powerful (L ~10^47 erg/s), high-redshift (z=1.067), compact-steep-spectrum radio-loud quasar 3C186. The diffuse X-ray emission from the cluster has a roughly ellipsoidal shape and extends out to radii of at least ~60 arcsec (~500 kpc). The centroid of the diffuse X-ray emission is offset by 0.68(+/-0.11) arcsec (5.5+/-0.9 kpc) from the position of the quasar. We measure a cluster mass within the radius at which the mean enclosed density is 2500 times the critical density, r_2500=283(+18/-13)kpc, of 1.02 (+0.21/-0.14)x10^14 M_sun. The gas mass fraction within this radius is f_gas=0.129(+0.015/-0.016). This value is consistent with measurements at lower redshifts and implies minimal evolution in the f_gas(z) relation for hot, massive clusters at 0<z<1.1. The measured metal abundance of 0.42(+0.08/-0.07) Solar is consistent with the abundance observed in other massive, high redshift clusters. The spatially-resolved temperature profile for the cluster shows a drop in temperature, from kT~8 keV to kT~3 keV, in its central regions that is characteristic of cooling core clusters. This is the first spectroscopic identification of a cooling core cluster at z>1. We measure cooling times for the X-ray emitting gas at radii of 50 kpc and 25 kpc of 1.7(+/-0.2)x10^9 years and 7.5(+/-2.6)x 10^8 years, as well as a nominal cooling rate (in the absence of heating) of 400(+/-190)M_sun/year within the central 100 kpc. In principle, the cooling gas can supply enough fuel to support the growth of the supermassive black hole and to power the luminous quasar. The radiative power of the quasar exceeds by a factor of 10 the kinematic power of the central radio source, suggesting that radiative heating may be important at intermittent intervals in cluster cores.
We report spectral, imaging, and variability results from four new XMM-Newton observations and two new Chandra observations of high-redshift (z > 4) radio-loud quasars (RLQs). Our targets span lower, and more representative, values of radio loudness
Chandra X-ray observations of the high redshift (z =1.532) radio-loud quasar 3C270.1 in 2008 February show the nucleus to have a power-law spectrum, Gamma = 1.66 +/- 0.08, typical of a radio-loud quasar, and a marginally-detected Fe Kalpha emission l
The high-redshift quasar PMN J0909+0354 ($z=3.288$) is known to have a pc-scale compact jet structure, based on global 5-GHz very long baseline interferometry (VLBI) observations performed in 1992. Its kpc-scale structure was studied with the Karl G.
We present the broadband X-ray properties of four of the most X-ray luminous (L_X >= 10^{45} erg/s in the 0.5-2 keV band) radio-quiet QSOs found in the ROSAT Bright Survey. This uniform sample class, which explores the extreme end of the QSO luminosi
The relativistic jets created by some active galactic nuclei are important agents of AGN feedback. In spite of this, our understanding of what produces these jets is still incomplete. X-ray observations, which can probe the processes operating in the