ترغب بنشر مسار تعليمي؟ اضغط هنا

The Velocity Field of the Local Universe from Measurements of Type Ia Supernovae

46   0   0.0 ( 0 )
 نشر من قبل Troels Haugb{\\o}lle
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a measurement of the velocity flow of the local universe relative to the CMB rest frame, based on the Jha, Riess & Kirshner (2007) sample of 133 low redshift type Ia supernovae. At a depth of 4500 km/s we find a dipole amplitude of 279+-68 km/s in the direction (l,b) = (285+-18,-10+-15), consistent with earlier measurements and with the assumption that the local velocity field is dominated by the Great Attractor region. At a larger depth of 5900 km/s we find a shift in the dipole direction towards the Shapley concentration. We also present the first measurement of the quadrupole term in the local velocity flow at these depths. Finally, we have performed detailed studies based on N-body simulations of the expected precision with which the lowest multipoles in the velocity field can be measured out to redshifts of order 0.1. Our mock catalogues are in good agreement with current observations, and demonstrate that our results are robust with respect to assumptions about the influence of local environment on the type Ia supernova rate.


قيم البحث

اقرأ أيضاً

We use multi-wavelength, matched aperture, integrated photometry from GALEX, SDSS and the RC3 to estimate the physical properties of 166 nearby galaxies hosting 168 well-observed Type Ia supernovae (SNe Ia). Our data corroborate well-known features t hat have been seen in other SN Ia samples. Specifically, hosts with active star formation produce brighter and slower SNe Ia on average, and hosts with luminosity-weighted ages older than 1 Gyr produce on average more faint, fast and fewer bright, slow SNe Ia than younger hosts. New results include that in our sample, the faintest and fastest SNe Ia occur only in galaxies exceeding a stellar mass threshhold of ~10^10 M_sun, indicating that their progenitors must arise in populations that are older and/or more metal rich than the general SN Ia population. A low host extinction sub-sample hints at a residual trend in peak luminosity with host age, after correcting for light-curve shape, giving the appearance that older hosts produce less-extincted SNe Ia on average. This has implications for cosmological fitting of SNe Ia and suggests that host age could be useful as a parameter in the fitting. Converting host mass to metallicity and computing 56Ni mass from the supernova light curves, we find that our local sample is consistent with a model that predicts a shallow trend between stellar metallicity and the 56Ni mass that powers the explosion, but we cannot rule out the absence of a trend. We measure a correlation between 56Ni mass and host age in the local universe that is shallower and not as significant as that seen at higher redshifts. The details of the age -- 56Ni mass correlations at low and higher redshift imply a luminosity-weighted age threshhold of ~3 Gyr for SN Ia hosts, above which they are less likely to produce SNe Ia with 56Ni masses above ~0.5 M_sun. (Abridged)
We analyze the magnitude-redshift data of type Ia supernovae included in the Union and Union2 compilations in the framework of an anisotropic Bianchi type I cosmological model and in the presence of a dark energy fluid with anisotropic equation of st ate. We find that the amount of deviation from isotropy of the equation of state of dark energy, the skewness delta, and the present level of anisotropy of the large-scale geometry of the Universe, the actual shear Sigma_0, are constrained in the ranges -0.16 < delta < 0.12 and -0.012 < Sigma_0 < 0.012 (1sigma C.L.) by Union2 data. Supernova data are then compatible with a standard isotropic universe (delta = Sigma_0 = 0), but a large level of anisotropy, both in the geometry of the Universe and in the equation of state of dark energy, is allowed.
While Type Ia Supernovae (SNe Ia) are one of the most mature cosmological probes, the next era promises to be extremely exciting in the number of different ways SNe Ia are used to measure various cosmological parameters. Here we review the experiment s in the 2020s that will yield orders of magnitudes more SNe Ia, and the new understandings and capabilities to constrain systematic uncertainties at a level to match these statistics. We then discuss five different cosmological probes with SNe Ia: the conventional Hubble diagram for measuring dark energy properties, the distance ladder for measuring the Hubble constant, peculiar velocities and weak lensing for measuring sigma8 and strong-lens measurements of H0 and other cosmological parameters. For each of these probes, we discuss the experiments that will provide the best measurements and also the SN Ia-related systematics that affect each one.
Type Ia Supernovae have yet again the opportunity to revolutionize the field of cosmology as the new generation of surveys are acquiring thousands of nearby SNeIa opening a new era in cosmology: the direct measurement of the growth of structure param etrized by $fD$. This method is based on the SNeIa peculiar velocities derived from the residual to the Hubble law as direct tracers of the full gravitational potential caused by large scale structure. With this technique, we could probe not only the properties of dark energy, but also the laws of gravity. In this paper we present the analytical framework and forecasts. We show that ZTF and LSST will be able to reach 5% precision on $fD$ by 2027. Our analysis is not significantly sensitive to photo-typing, but known selection functions and spectroscopic redshifts are mandatory. We finally introduce an idea of a dedicated spectrograph that would get all the required information in addition to boost the efficiency to each SNeIa so that we could reach the 5% precision within the first two years of LSST operation and the few percent level by the end of the survey.
407 - A. G. Riess 1997
We have developed a quantitative, empirical method for estimating the age of Type Ia supernovae (SNe Ia) from a single spectral epoch. The technique examines the goodness of fit of spectral features as a function of the temporal evolution of a large database of SNe Ia spectral features. When a SN Ia spectrum with good signal-to-noise ratio over the rest frame range 3800 to 6800 A is available, the precision of a spectral feature age (SFA) is (1-sigma) ~ 1.4 days. SFA estimates are made for two spectral epochs of SN 1996bj (z=0.574) to measure the rate of aging at high redshift. In the 10.05 days which elapsed between spectral observations, SN 1996bj aged 3.35 $pm$ 3.2 days, consistent with the 6.38 days of aging expected in an expanding Universe and inconsistent with no time dilation at the 96.4 % confidence level. The precision to which individual features constrain the supernova age has implications for the source of inhomogeneities among SNe Ia.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا