ترغب بنشر مسار تعليمي؟ اضغط هنا

Time Dilation from Spectral Feature Age Measurements of Type Ia Supernovae

408   0   0.0 ( 0 )
 نشر من قبل Adam Riess
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. G. Riess




اسأل ChatGPT حول البحث

We have developed a quantitative, empirical method for estimating the age of Type Ia supernovae (SNe Ia) from a single spectral epoch. The technique examines the goodness of fit of spectral features as a function of the temporal evolution of a large database of SNe Ia spectral features. When a SN Ia spectrum with good signal-to-noise ratio over the rest frame range 3800 to 6800 A is available, the precision of a spectral feature age (SFA) is (1-sigma) ~ 1.4 days. SFA estimates are made for two spectral epochs of SN 1996bj (z=0.574) to measure the rate of aging at high redshift. In the 10.05 days which elapsed between spectral observations, SN 1996bj aged 3.35 $pm$ 3.2 days, consistent with the 6.38 days of aging expected in an expanding Universe and inconsistent with no time dilation at the 96.4 % confidence level. The precision to which individual features constrain the supernova age has implications for the source of inhomogeneities among SNe Ia.


قيم البحث

اقرأ أيضاً

This work is based on the first results from a systematic search for high redshift Type Ia supernovae. Using filters in the R-band we discovered seven such SNe, with redshift z = 0.3 - 0.5, before or at maximum light. Type Ia SNe are known to be a ho mogeneous group of SNe, to first order, with very similar light curves, spectra and peak luminosities. In this talk we report that the light curves we observe are all broadened (time dilated) as expected from the expanding universe hypothesis. Small variations from the expected 1+z broadening of the light curve widths can be attributed to a width-brightness correlation that has been observed for nearby SNe (z<0.1). We show in this talk the first clear observation of the cosmological time dilation for macroscopic objects.
We present multiepoch spectra of 13 high-redshift Type Ia supernovae (SNe Ia) drawn from the literature, the ESSENCE and SNLS projects, and our own separate dedicated program on the ESO Very Large Telescope. We use the Supernova Identification (SNID) code of Blondin & Tonry to determine the spectral ages in the supernova rest frame. Comparison with the observed elapsed time yields an apparent aging rate consistent with the 1/(1+z) factor (where z is the redshift) expected in a homogeneous, isotropic, expanding universe. These measurements thus confirm the expansion hypothesis, while unambiguously excluding models that predict no time dilation, such as Zwickys tired light hypothesis. We also test for power-law dependencies of the aging rate on redshift. The best-fit exponent for these models is consistent with the expected 1/(1+z) factor.
We present a set of 11 type Ia supernova (SN Ia) lightcurves with dense, pre-maximum sampling. These supernovae (SNe), in galaxies behind the Large Magellanic Cloud (LMC), were discovered by the SuperMACHO survey. The SNe span a redshift range of z = 0.11 - 0.35. Our lightcurves contain some of the earliest pre-maximum observations of SNe Ia to date. We also give a functional model that describes the SN Ia lightcurve shape (in our VR-band). Our function uses the expanding fireball model of Goldhaber et al. (1998) to describe the rising lightcurve immediately after explosion but constrains it to smoothly join the remainder of the lightcurve. We fit this model to a composite observed VR-band lightcurve of three SNe between redshifts of 0.135 to 0.165. These SNe have not been K-corrected or adjusted to account for reddening. In this redshift range, the observed VR-band most closely matches the rest frame V-band. Using the best fit to our functional description of the lightcurve, we find the time between explosion and observed VR-band maximum to be 17.6+-1.3(stat)+-0.07(sys) rest-frame days for a SN Ia with a VR-band Delta m_{-10} of 0.52mag. For the redshifts sampled, the observed VR-band time-of-maximum brightness should be the same as the rest-frame V-band maximum to within 1.1 rest-frame days.
246 - Dan Maoz , Filippo Mannucci , 2012
We derive the delay-time distribution (DTD) of type-Ia supernovae (SNe Ia) using a sample of 132 SNe Ia, discovered by the Sloan Digital Sky Survey II (SDSS2) among 66,000 galaxies with spectral-based star-formation histories (SFHs). To recover the b est-fit DTD, the SFH of every individual galaxy is compared, using Poisson statistics, to the number of SNe that it hosted (zero or one), based on the method introduced in Maoz et al. (2011). This SN sample differs from the SDSS2 SN Ia sample analyzed by Brandt et al. (2010), using a related, but different, DTD recovery method. Furthermore, we use a simulation-based SN detection-efficiency function, and we apply a number of important corrections to the galaxy SFHs and SN Ia visibility times. The DTD that we find has 4-sigma detections in all three of its time bins: prompt (t < 420 Myr), intermediate (0.4 < t < 2.4 Gyr), and delayed (t > 2.4 Gyr), indicating a continuous DTD, and it is among the most accurate and precise among recent DTD reconstructions. The best-fit power-law form to the recovered DTD is t^(-1.12+/-0.08), consistent with generic ~t^-1 predictions of SN Ia progenitor models based on the gravitational-wave induced mergers of binary white dwarfs. The time integrated number of SNe Ia per formed stellar mass is N_SN/M = 0.00130 +/- 0.00015 Msun^-1, or about 4% of the stars formed with initial masses in the 3-8 Msun range. This is lower than, but largely consistent with, several recent DTD estimates based on SN rates in galaxy clusters and in local-volume galaxies, and is higher than, but consistent with N_SN/M estimated by comparing volumetric SN Ia rates to cosmic SFH.
We present a measurement of the velocity flow of the local universe relative to the CMB rest frame, based on the Jha, Riess & Kirshner (2007) sample of 133 low redshift type Ia supernovae. At a depth of 4500 km/s we find a dipole amplitude of 279+-68 km/s in the direction (l,b) = (285+-18,-10+-15), consistent with earlier measurements and with the assumption that the local velocity field is dominated by the Great Attractor region. At a larger depth of 5900 km/s we find a shift in the dipole direction towards the Shapley concentration. We also present the first measurement of the quadrupole term in the local velocity flow at these depths. Finally, we have performed detailed studies based on N-body simulations of the expected precision with which the lowest multipoles in the velocity field can be measured out to redshifts of order 0.1. Our mock catalogues are in good agreement with current observations, and demonstrate that our results are robust with respect to assumptions about the influence of local environment on the type Ia supernova rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا