ﻻ يوجد ملخص باللغة العربية
We analyze the magnitude-redshift data of type Ia supernovae included in the Union and Union2 compilations in the framework of an anisotropic Bianchi type I cosmological model and in the presence of a dark energy fluid with anisotropic equation of state. We find that the amount of deviation from isotropy of the equation of state of dark energy, the skewness delta, and the present level of anisotropy of the large-scale geometry of the Universe, the actual shear Sigma_0, are constrained in the ranges -0.16 < delta < 0.12 and -0.012 < Sigma_0 < 0.012 (1sigma C.L.) by Union2 data. Supernova data are then compatible with a standard isotropic universe (delta = Sigma_0 = 0), but a large level of anisotropy, both in the geometry of the Universe and in the equation of state of dark energy, is allowed.
The standard cosmology strongly relies upon the Cosmological Principle, which consists on the hypotheses of large scale isotropy and homogeneity of the Universe. Testing these assumptions is, therefore, crucial to determining if there are deviations
An important problem in precision cosmology is the determination of the effects of averaging and backreaction on observational predictions, particularly in view of the wealth of new observational data and improved statistical techniques. In this pape
We use multi-wavelength, matched aperture, integrated photometry from GALEX, SDSS and the RC3 to estimate the physical properties of 166 nearby galaxies hosting 168 well-observed Type Ia supernovae (SNe Ia). Our data corroborate well-known features t
The detection of Pop III supernovae could directly probe the primordial IMF for the first time, unveiling the properties of the first galaxies, early chemical enrichment and reionization, and the seeds of supermassive black holes. Growing evidence th
While Type Ia Supernovae (SNe Ia) are one of the most mature cosmological probes, the next era promises to be extremely exciting in the number of different ways SNe Ia are used to measure various cosmological parameters. Here we review the experiment