ترغب بنشر مسار تعليمي؟ اضغط هنا

The circumburst environment of a FRED GRB: study of the prompt emission and X-ray/optical afterglow of GRB 051111

61   0   0.0 ( 0 )
 نشر من قبل Cristiano Guidorzi
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. Guidorzi




اسأل ChatGPT حول البحث

We report a multi-wavelength analysis of the prompt emission and early afterglow of GRB051111 and discuss its properties in the context of current fireball models. The detection of GRB051111 by the Burst Alert Telescope on-board Swift triggered early BVRi observations with the 2-m robotic Faulkes Telescope North in Hawaii, as well as X-ray observations with the Swift X-Ray Telescope. The prompt gamma-ray emission shows a classical FRED profile. The optical afterglow light curves are fitted with a broken power law, with alpha_1=0.35 to alpha_2=1.35 and a break time around 12 minutes after the GRB. Although contemporaneous X-ray observations were not taken, a power law connection between the gamma-ray tail of the FRED temporal profile and the late XRT flux decay is feasible. Alternatively, if the X-ray afterglow tracks the optical decay, this would represent one of the first GRBs for which the canonical steep-shallow-normal decay typical of early X-ray afterglows has been monitored optically. We present a detailed analysis of the intrinsic extinction, elemental abundances and spectral energy distribution. From the absorption measured in the low X-ray band we find possible evidence for an overabundance of some alpha elements such as oxygen, [O/Zn]=0.7+/-0.3, or, alternatively, for a significant presence of molecular gas. The IR-to-X-ray Spectral Energy Distribution measured at 80 minutes after the burst is consistent with the cooling break lying between the optical and X-ray bands. Extensive modelling of the intrinsic extinction suggests dust with big grains or grey extinction profiles. The early optical break is due either to an energy injection episode or, less probably, to a stratified wind environment for the circumburst medium.

قيم البحث

اقرأ أيضاً

Our knowledge of the intrinsic properties of short duration Gamma-Ray Bursts has relied, so far, only upon a few cases for which the estimate of the distance and an extended, multiwavelength monitoring of the afterglow have been obtained. We carried out multiwavelength observations of the short GRB 061201 aimed at estimating its distance and studying its properties. We performed a spectral and timing analysis of the prompt and afterglow emission and discuss the results in the context of the standard fireball model. A clear temporal break was observed in the X-ray light curve about 40 minutes after the burst trigger. We find that the spectral and timing behaviour of the X-ray afterglow is consistent with a jet origin of the observed break, although the optical data can not definitively confirm this and other scenarios are possible. No underlying host galaxy down to R~26 mag was found after fading of the optical afterglow. Thus, no secure redshift could be measured for this burst. The nearest galaxy is at z=0.111 and shows evidence of star formation activity. We discuss the association of GRB 061201 with this galaxy and with the ACO S 995 galaxy cluster, from which the source is at an angular distance of 17 and 8.5, respectively. We also test the association with a possible undetected, positionally consistent galaxy at z~1. In all these cases, in the jet interpretation, we find a jet opening angle of 1-2 degrees.
PROMPT (Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes) observed the early-time optical afterglow of GRB 060607A and obtained a densely sampled multiwavelength light curve that begins only tens of seconds after the GRB. Located at Cerro Tololo Inter-American Observatory in Chile, PROMPT is designed to observe the afterglows of gamma-ray bursts using multiple automated 0.4-m telescopes that image simultaneously in many filters when the afterglow is bright and may be highly variable. The data span the interval from 44 seconds after the GRB trigger to 3.3 hours in the Bgri filters. We observe an initial peak in the light curve at approximately three minutes, followed by rebrightenings peaking around 40 minutes and again at 66 minutes. Although our data overlap with the early Swift gamma-ray and x-ray light curves, we do not see a correlation between the optical and high-energy flares. We do not find evidence for spectral evolution throughout the observations. We model the variations in the light curves and find that the most likely cause of the rebrightening episodes is a refreshment of the forward shock preceded by a rapidly fading reverse shock component, although other explanations are plausible.
We present prompt gamma-ray, early NIR/optical, late optical and X-ray observations of the peculiar GRB 070311 discovered by INTEGRAL, in order to gain clues on the mechanisms responsible for the prompt gamma-ray pulse as well as for the early and la te multi-band afterglow of GRB 070311. We fitted with empirical functions the gamma-ray and optical light curves and scaled the result to the late time X-rays. The H-band light curve taken by REM shows two pulses peaking 80 and 140 s after the peak of the gamma-ray burst and possibly accompanied by a faint gamma-ray tail. Remarkably, the late optical and X-ray afterglow underwent a major rebrightening between 3x10^4 and 2x10^5 s after the burst with an X-ray fluence comparable with that of the prompt emission extrapolated in the same band. Notably, the time profile of the late rebrightening can be described as the combination of a time-rescaled version of the prompt gamma-ray pulse and an underlying power law. This result supports a common origin for both prompt and late X-ray/optical afterglow rebrightening of GRB 070311 within the external shock scenario. The main fireball would be responsible for the prompt emission, while a second shell would produce the rebrightening when impacting the leading blastwave in a refreshed shock (abridged).
97 - B. Gendre 2011
Aim: To present the optical observations of the afterglow of GRB 101024A and to try to reconcile these observations with the X-ray afterglow data of GRB 101024A using current afterglow models Method: We employ early optical observations using the Z adko Telescope combined with X-ray data and compare with the reverse shock/forward shock model. Results: The early optical light curve reveals a very unusual steep decay index of alpha~5. This is followed by a flattening and possibly a plateau phase coincident with a similar feature in the X-ray. We discuss these observations in the framework of the standard reverse shock/forward shock model and energy injection.We note that the plateau phase might also be the signature of the formation of a new magnetar.
We present and perform a detailed analysis of multi-wavelength observations of thisgrb, an optical bright GRB with an observed reverse shock (RS) signature. Observations of this GRB were acquired with the BOOTES-4 robotic telescope, the fermi, and th e swift missions. Time-resolved spectroscopy of the prompt emission shows that changes to the peak energy (Ep) tracks intensity and the low-energy spectral index seems to follow the intensity for the first episode, whereas this tracking behavior is less clear during the second episode. The fit to the afterglow light curves shows that the early optical afterglow can be described with RS emission and is consistent with the thin shell scenario of the constant ambient medium. The late time afterglow decay is also consistent with the prediction of the external forward shock (FS) model. We determine the properties of the shocks, Lorentz factor, magnetization parameters, and ambient density of thisgrb, and compare these parameters with another 12 GRBs, consistent with having RS produced by thin shells in an ISM-like medium. The value of the magnetization parameter ($R_{rm B} approx 18$) indicates a moderately magnetized baryonic dominant jet composition for thisgrb. We also report the host galaxy photometric observations of thisgrb obtained with 10.4m GTC, 3.5m CAHA, and 3.6m DOT telescopes and find the host (photo $z$ = $2.8^{+0.7}_{-0.9}$) to be a high mass, star-forming galaxy with a star formation rate of $20 pm 10 msun$ $rm yr^{-1}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا