ترغب بنشر مسار تعليمي؟ اضغط هنا

GRB 140102A: Insight into Prompt Spectral Evolution and Early Optical Afterglow Emission

103   0   0.0 ( 0 )
 نشر من قبل Rahul Gupta
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present and perform a detailed analysis of multi-wavelength observations of thisgrb, an optical bright GRB with an observed reverse shock (RS) signature. Observations of this GRB were acquired with the BOOTES-4 robotic telescope, the fermi, and the swift missions. Time-resolved spectroscopy of the prompt emission shows that changes to the peak energy (Ep) tracks intensity and the low-energy spectral index seems to follow the intensity for the first episode, whereas this tracking behavior is less clear during the second episode. The fit to the afterglow light curves shows that the early optical afterglow can be described with RS emission and is consistent with the thin shell scenario of the constant ambient medium. The late time afterglow decay is also consistent with the prediction of the external forward shock (FS) model. We determine the properties of the shocks, Lorentz factor, magnetization parameters, and ambient density of thisgrb, and compare these parameters with another 12 GRBs, consistent with having RS produced by thin shells in an ISM-like medium. The value of the magnetization parameter ($R_{rm B} approx 18$) indicates a moderately magnetized baryonic dominant jet composition for thisgrb. We also report the host galaxy photometric observations of thisgrb obtained with 10.4m GTC, 3.5m CAHA, and 3.6m DOT telescopes and find the host (photo $z$ = $2.8^{+0.7}_{-0.9}$) to be a high mass, star-forming galaxy with a star formation rate of $20 pm 10 msun$ $rm yr^{-1}$.



قيم البحث

اقرأ أيضاً

We present the results of a detailed investigation of the prompt and afterglow emission in the HESS detected GRB 190829A. Swift and Fermi observations of the prompt phase of this GRB reveal two isolated sub-bursts or episodes, separated by a quiescen t phase. The energetic and the spectral properties of the first episode are in stark contrast to the second. The first episode, which has a higher spectral peak of $sim 120:text{keV}$ and a low isotropic energy $sim 10^{50}:text{erg}$ is an outlier to the Amati correlation and marginally satisfies the Yonetoku correlation. However, the energetically dominant second episode has lower peak energy and is consistent with the above correlations. We compared this GRB to other low luminosity GRBs (LLGRBs). Prompt emission of LLGRBs also indicates a relativistic shock breakout origin of the radiation. For GRB 190829A, some of the properties of a shock breakout origin are satisfied. However, the absence of an accompanying thermal component and energy above the shock breakout critical limit precludes a shock breakout origin. In the afterglow, an unusual long-lasting late time flare of duration $sim 10^4:text{s}$ is observed. We also analyzed the late-time fermi-LAT emission that encapsulates the H.E.S.S. detection. Some of the LAT photons are likely to be associated with the source. All the above observational facts suggest GRB 190829A is a peculiar low luminosity GRB that is not powered by a shock breakout, and with an unusual rebrightening due to a patchy emission or a refreshed shock during the afterglow. Furthermore, our results show that TeV energy photons seem common in both high luminosity GRBs and LLGRBs.
The Supercritical Pile is a very economical GRB model that provides for the efficient conversion of the energy stored in the protons of a Relativistic Blast Wave (RBW) into radiation and at the same time produces - in the prompt GRB phase, even in th e absence of any particle acceleration - a spectral peak at energy $sim 1$ MeV. We extend this model to include the evolution of the RBW Lorentz factor $Gamma$ and thus follow its spectral and temporal features into the early GRB afterglow stage. One of the novel features of the present treatment is the inclusion of the feedback of the GRB produced radiation on the evolution of $Gamma$ with radius. This feedback and the presence of kinematic and dynamic thresholds in the model are sources of potentially very rich time evolution which we have began to explore. In particular, one can this way obtain afterglow light curves with steep decays followed by the more conventional flatter afterglow slopes, while at the same time preserving the desirable features of the model, i.e. the well defined relativistic electron source and radiative processes that produce the proper peak in the $ u F_{ u}$ spectra. In this note we present the results of a specific set of parameters of this model with emphasis on the multiwavelength prompt emission and transition to the early afterglow.
GRB 190114C is the first gamma-ray burst detected at Very High Energies (VHE, i.e. >300 GeV) by the MAGIC Cherenkov telescope. The analysis of the emission detected by the Fermi satellite at lower energies, in the 10 keV -- 100 GeV energy range, up t o ~ 50 seconds (i.e. before the MAGIC detection) can hold valuable information. We analyze the spectral evolution of the emission of GRB 190114C as detected by the Fermi Gamma-Ray Burst Monitor (GBM) in the 10 keV -- 40 MeV energy range up to ~60 sec. The first 4 s of the burst feature a typical prompt emission spectrum, which can be fit by a smoothly broken power-law function with typical parameters. Starting on ~4 s post-trigger, we find an additional nonthermal component, which can be fit by a power law. This component rises and decays quickly. The 10 keV -- 40 MeV flux of the power-law component peaks at ~ 6 s; it reaches a value of 1.7e-5 erg cm-2 s-1. The time of the peak coincides with the emission peak detected by the Large Area Telescope (LAT) on board Fermi. The power-law spectral slope that we find in the GBM data is remarkably similar to that of the LAT spectrum, and the GBM+LAT spectral energy distribution seems to be consistent with a single component. This suggests that the LAT emission and the power-law component that we find in the GBM data belong to the same emission component, which we interpret as due to the afterglow of the burst. The onset time allows us to estimate the initial jet bulk Lorentz factor Gamma_0 is about 500, depending on the assumed circum-burst density.
PROMPT (Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes) observed the early-time optical afterglow of GRB 060607A and obtained a densely sampled multiwavelength light curve that begins only tens of seconds after the GRB. Located at Cerro Tololo Inter-American Observatory in Chile, PROMPT is designed to observe the afterglows of gamma-ray bursts using multiple automated 0.4-m telescopes that image simultaneously in many filters when the afterglow is bright and may be highly variable. The data span the interval from 44 seconds after the GRB trigger to 3.3 hours in the Bgri filters. We observe an initial peak in the light curve at approximately three minutes, followed by rebrightenings peaking around 40 minutes and again at 66 minutes. Although our data overlap with the early Swift gamma-ray and x-ray light curves, we do not see a correlation between the optical and high-energy flares. We do not find evidence for spectral evolution throughout the observations. We model the variations in the light curves and find that the most likely cause of the rebrightening episodes is a refreshment of the forward shock preceded by a rapidly fading reverse shock component, although other explanations are plausible.
We report on the observations of gamma-ray burst (GRB) 190114C by the Fermi Gamma-ray Space Telescope and the Neil Gehrels Swift Observatory. The early-time observations reveal multiple emission components that evolve independently, with a delayed po wer-law component that exhibits significant spectral attenuation above 40 MeV in the first few seconds of the burst. This power-law component transitions to a harder spectrum that is consistent with the afterglow emission observed at later times. This afterglow component is clearly identifiable in the GBM and BAT light curves as a slowly fading emission component on which the rest of the prompt emission is superimposed. As a result, we are able to constrain the transition from internal shock to external shock dominated emission. We find that the temporal and spectral evolution of the broadband afterglow emission can be well modeled as synchrotron emission from a forward shock propagating into a wind-like circumstellar environment and find that high-energy photons observed by Fermi LAT are in tension with the theoretical maximum energy that can be achieved through synchrotron emission from a shock. These violations of the maximum synchrotron energy are further compounded by the detection of very high energy (VHE) emission above 300 GeV by MAGIC concurrent with our observations. We conclude that the observations of VHE photons from GRB 190114C necessitates either an additional emission mechanism at very high energies that is hidden in the synchrotron component in the LAT energy range, an acceleration mechanism that imparts energy to the particles at a rate that is faster than the electron synchrotron energy loss rate, or revisions of the fundamental assumptions used in estimating the maximum photon energy attainable through the synchrotron process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا