ترغب بنشر مسار تعليمي؟ اضغط هنا

A study of the prompt and afterglow emission of the Short GRB 061201

223   0   0.0 ( 0 )
 نشر من قبل Giulia Stratta
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Our knowledge of the intrinsic properties of short duration Gamma-Ray Bursts has relied, so far, only upon a few cases for which the estimate of the distance and an extended, multiwavelength monitoring of the afterglow have been obtained. We carried out multiwavelength observations of the short GRB 061201 aimed at estimating its distance and studying its properties. We performed a spectral and timing analysis of the prompt and afterglow emission and discuss the results in the context of the standard fireball model. A clear temporal break was observed in the X-ray light curve about 40 minutes after the burst trigger. We find that the spectral and timing behaviour of the X-ray afterglow is consistent with a jet origin of the observed break, although the optical data can not definitively confirm this and other scenarios are possible. No underlying host galaxy down to R~26 mag was found after fading of the optical afterglow. Thus, no secure redshift could be measured for this burst. The nearest galaxy is at z=0.111 and shows evidence of star formation activity. We discuss the association of GRB 061201 with this galaxy and with the ACO S 995 galaxy cluster, from which the source is at an angular distance of 17 and 8.5, respectively. We also test the association with a possible undetected, positionally consistent galaxy at z~1. In all these cases, in the jet interpretation, we find a jet opening angle of 1-2 degrees.

قيم البحث

اقرأ أيضاً

60 - C. Guidorzi 2006
We report a multi-wavelength analysis of the prompt emission and early afterglow of GRB051111 and discuss its properties in the context of current fireball models. The detection of GRB051111 by the Burst Alert Telescope on-board Swift triggered early BVRi observations with the 2-m robotic Faulkes Telescope North in Hawaii, as well as X-ray observations with the Swift X-Ray Telescope. The prompt gamma-ray emission shows a classical FRED profile. The optical afterglow light curves are fitted with a broken power law, with alpha_1=0.35 to alpha_2=1.35 and a break time around 12 minutes after the GRB. Although contemporaneous X-ray observations were not taken, a power law connection between the gamma-ray tail of the FRED temporal profile and the late XRT flux decay is feasible. Alternatively, if the X-ray afterglow tracks the optical decay, this would represent one of the first GRBs for which the canonical steep-shallow-normal decay typical of early X-ray afterglows has been monitored optically. We present a detailed analysis of the intrinsic extinction, elemental abundances and spectral energy distribution. From the absorption measured in the low X-ray band we find possible evidence for an overabundance of some alpha elements such as oxygen, [O/Zn]=0.7+/-0.3, or, alternatively, for a significant presence of molecular gas. The IR-to-X-ray Spectral Energy Distribution measured at 80 minutes after the burst is consistent with the cooling break lying between the optical and X-ray bands. Extensive modelling of the intrinsic extinction suggests dust with big grains or grey extinction profiles. The early optical break is due either to an energy injection episode or, less probably, to a stratified wind environment for the circumburst medium.
We present prompt gamma-ray, early NIR/optical, late optical and X-ray observations of the peculiar GRB 070311 discovered by INTEGRAL, in order to gain clues on the mechanisms responsible for the prompt gamma-ray pulse as well as for the early and la te multi-band afterglow of GRB 070311. We fitted with empirical functions the gamma-ray and optical light curves and scaled the result to the late time X-rays. The H-band light curve taken by REM shows two pulses peaking 80 and 140 s after the peak of the gamma-ray burst and possibly accompanied by a faint gamma-ray tail. Remarkably, the late optical and X-ray afterglow underwent a major rebrightening between 3x10^4 and 2x10^5 s after the burst with an X-ray fluence comparable with that of the prompt emission extrapolated in the same band. Notably, the time profile of the late rebrightening can be described as the combination of a time-rescaled version of the prompt gamma-ray pulse and an underlying power law. This result supports a common origin for both prompt and late X-ray/optical afterglow rebrightening of GRB 070311 within the external shock scenario. The main fireball would be responsible for the prompt emission, while a second shell would produce the rebrightening when impacting the leading blastwave in a refreshed shock (abridged).
We present the results of a detailed investigation of the prompt and afterglow emission in the HESS detected GRB 190829A. Swift and Fermi observations of the prompt phase of this GRB reveal two isolated sub-bursts or episodes, separated by a quiescen t phase. The energetic and the spectral properties of the first episode are in stark contrast to the second. The first episode, which has a higher spectral peak of $sim 120:text{keV}$ and a low isotropic energy $sim 10^{50}:text{erg}$ is an outlier to the Amati correlation and marginally satisfies the Yonetoku correlation. However, the energetically dominant second episode has lower peak energy and is consistent with the above correlations. We compared this GRB to other low luminosity GRBs (LLGRBs). Prompt emission of LLGRBs also indicates a relativistic shock breakout origin of the radiation. For GRB 190829A, some of the properties of a shock breakout origin are satisfied. However, the absence of an accompanying thermal component and energy above the shock breakout critical limit precludes a shock breakout origin. In the afterglow, an unusual long-lasting late time flare of duration $sim 10^4:text{s}$ is observed. We also analyzed the late-time fermi-LAT emission that encapsulates the H.E.S.S. detection. Some of the LAT photons are likely to be associated with the source. All the above observational facts suggest GRB 190829A is a peculiar low luminosity GRB that is not powered by a shock breakout, and with an unusual rebrightening due to a patchy emission or a refreshed shock during the afterglow. Furthermore, our results show that TeV energy photons seem common in both high luminosity GRBs and LLGRBs.
We present a comprehensive analysis of a bright, long duration (T90 ~ 257 s) GRB 110205A at redshift z= 2.22. The optical prompt emission was detected by Swift/UVOT, ROTSE-IIIb and BOOTES telescopes when the GRB was still radiating in the gamma-ray b and. Nearly 200 s of observations were obtained simultaneously from optical, X-ray to gamma-ray, which makes it one of the exceptional cases to study the broadband spectral energy distribution across 6 orders of magnitude in energy during the prompt emission phase. By fitting the time resolved prompt spectra, we clearly identify, for the first time, an interesting two-break energy spectrum, roughly consistent with the standard GRB synchrotron emission model in the fast cooling regime. Although the prompt optical emission is brighter than the extrapolation of the best fit X/gamma-ray spectra, it traces the gamma-ray light curve shape, suggesting a relation to the prompt high energy emission. The synchrotron + SSC scenario is disfavored by the data, but the models invoking a pair of internal shocks or having two emission regions can interpret the data well. Shortly after prompt emission (~ 1100 s), a bright (R = 14.0) optical emission hump with very steep rise (alpha ~ 5.5) was observed which we interpret as the emission from the reverse shock. It is the first time that the rising phase of a reverse shock component has been closely observed. The full optical and X-ray afterglow lightcurves can be interpreted within the standard reverse shock (RS) + forward shock (FS) model. In general, the high quality prompt emission and afterglow data allow us to apply the standard fireball shock model to extract valuable information about the GRB including the radiation mechanism, radius of prompt emission R, initial Lorentz factor of the outflow, the composition of the ejecta, as well as the collimation angle and the total energy budget.
GRB 160821B is a short duration gamma-ray burst (GRB) detected and localized by the Neil Gehrels Swift Observatory in the outskirts of a spiral galaxy at z=0.1613, at a projected physical offset of 16 kpc from the galaxys center. We present X-ray, op tical/nIR and radio observations of its counterpart and model them with two distinct components of emission: a standard afterglow, arising from the interaction of the relativistic jet with the surrounding medium, and a kilonova, powered by the radioactive decay of the sub-relativistic ejecta. Broadband modeling of the afterglow data reveals a weak reverse shock propagating backward into the jet, and a likely jet-break at 3.5 d. This is consistent with a structured jet seen slightly off-axis while expanding into a low-density medium. Analysis of the kilonova properties suggests a rapid evolution toward red colors, similar to AT2017gfo, and a low nIR luminosity, possibly due to the presence of a long-lived neutron star. The global properties of the environment, the inferred low mass (M_ej < 0.006 Msun) and velocities (v > 0.05 c) of lanthanide-rich ejecta are consistent with a binary neutron star merger progenitor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا