ﻻ يوجد ملخص باللغة العربية
We have carried out a direct and differential imaging search for sub-stellar companions to eps Indi A using the adaptive optics system NACO at the ESO VLT. The observations were carried out in September 2004 with NACO/SDI as well as with NACOs S27 camera in the H and Ks filters. The SDI data cover an area of ~2.8 around eps Indi A. No detection was achieved in the inner neighbourhood down to 53 Mj (5 sigma confidence level) at a separation > 0.4 (1.45 AU) and down to 21 Mj for separations > 1.3 (4.7 AU). To cover a wider field of view, observations with the S27 camera and a coronagraphic mask were obtained. We detected a faint source at a separation of (7.3 +/- 0.1) and a position angle of (302.9 +/- 0.8) degree. The photometry for the candidate companion yields m(H)=(16.45 +/- 0.04)mag and m(Ks) = (15.41 +/- 0.06)mag, respectively. Those magnitudes and the resulting color (H-Ks) = (1.04 +/- 0.07)mag fit best to a spectral type of L5 - L9.5 if it is bound. Observations done with HST/NICMOS by M. Endl have shown the source to be a background object.
A total of 28 young nearby stars (ages $leq 60$,Myr) have been observed in the K$_{rm s}$-band with the adaptive optics imager Naos-Conica of the Very Large Telescope at the Paranal Observatory in Chile. Among the targets are ten visual binaries and
We have identified a new early T dwarf only 3.6pc from the Sun, as a common proper motion companion (separation 1459AU) to the K5V star Epsilon Indi (HD209100). As such, Epsilon Indi B is one of the highest proper motion sources outside the solar sys
The sensitivity of radial velocity (RV) surveys for exoplanet detection are extending to increasingly long orbital periods, where companions with periods of several years are now being regularly discovered. Companions with orbital periods that exceed
We present the results of a survey to detect low-mass companions of UMa group members, carried out in 2003-2006 with NACO at the ESO VLT. While many extra-solar planets and planetary candidates have been found in close orbits around stars by the radi
A recently observed bump in the cosmic ray (CR) spectrum from 0.3--30 TV is likely caused by a stellar bow shock that reaccelerates emph{preexisting} CRs, which further propagate to the Sun along the magnetic field lines. Along their way, these parti