ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of Planetary and Stellar Companions to Neighboring Stars via a Combination of Radial Velocity and Direct Imaging Techniques

140   0   0.0 ( 0 )
 نشر من قبل Stephen Kane
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The sensitivity of radial velocity (RV) surveys for exoplanet detection are extending to increasingly long orbital periods, where companions with periods of several years are now being regularly discovered. Companions with orbital periods that exceed the duration of the survey manifest in the data as an incomplete orbit or linear trend, a feature that can either present as the sole detectable companion to the host star, or as an additional signal overlain on the signatures of previously discovered companion(s). A diagnostic that can confirm or constrain scenarios in which the trend is caused by an unseen stellar, rather than planetary, companion is the use of high-contrast imaging observations. Here, we present RV data from the Anglo-Australian Planet Search (AAPS) for twenty stars that show evidence of orbiting companions. Of these, six companions have resolved orbits, with three that lie in the planetary regime. Two of these (HD~92987b and HD~221420b) are new discoveries. Follow-up observations using the Differential Speckle Survey Instrument (DSSI) on the Gemini South telescope revealed that five of the twenty monitored companions are likely stellar in nature. We use the sensitivity of the AAPS and DSSI data to place constraints on the mass of the companions for the remaining systems. Our analysis shows that a planetary-mass companion provides the most likely self-consistent explanation of the data for many of the remaining systems.

قيم البحث

اقرأ أيضاً

High contrast imaging enables the determination of orbital parameters for substellar companions (planets, brown dwarfs) from the observed relative astrometry and the estimation of model and age-dependent masses from their observed magnitudes or spect ra. Combining astrometric positions with radial velocity gives direct constraints on the orbit and on the dynamical masses of companions. A brown dwarf was discovered with the VLT/SPHERE instrument in 2017, which orbits at $sim$ 11 au around HD 206893. Its mass was estimated between 12 and 50 $M_{Jup}$ from evolutionary models and its photometry. However, given the significant uncertainty on the age of the system and the peculiar spectrophotometric properties of the companion, this mass is not well constrained. We aim at constraining the orbit and dynamical mass of HD 206893 B. We combined radial velocity data obtained with HARPS spectra and astrometric data obtained with the high contrast imaging VLT/SPHERE and VLT/NaCo instruments, with a time baseline less than three years. We then combined those data with astrometry data obtained by Hipparcos and Gaia with a time baseline of 24 years. We used a MCMC approach to estimate the orbital parameters and dynamical mass of the brown dwarf from those data. We infer a period between 21 and 33{deg} and an inclination in the range 20-41{deg} from pole-on from HD 206893 B relative astrometry. The RV data show a significant RV drift over 1.6 yrs. We show that HD 206893 B cannot be the source of this observed RV drift as it would lead to a dynamical mass inconsistent with its photometry and spectra and with Hipparcos and Gaia data. An additional inner (semimajor axis in the range 1.4-2.6 au) and massive ($sim$ 15 $M_{Jup}$) companion is needed to explain the RV drift, which is compatible with the available astrometric data of the star, as well as with the VLT/SPHERE and VLT/NaCo nondetection.
A total of 28 young nearby stars (ages $leq 60$,Myr) have been observed in the K$_{rm s}$-band with the adaptive optics imager Naos-Conica of the Very Large Telescope at the Paranal Observatory in Chile. Among the targets are ten visual binaries and one triple system at distances between 10 and 130 pc, all previously known. During a first observing epoch a total of 20 faint stellar or sub-stellar companion-candidates were detected around seven of the targets. These fields, as well as most of the stellar binaries, were re-observed with the same instrument during a second epoch, about one year later. We present the astrometric observations of all binaries. Their analysis revealed that all stellar binaries are co-moving. In two cases (HD 119022 AB and FG Aqr B/C) indications for significant orbital motions were found. However, all sub-stellar companion-candidates turned out to be non-moving background objects except PZ Tel which is part of this project but whose results were published elsewhere. Detection limits were determined for all targets, and limiting masses were derived adopting three different age values; they turn out to be less than 10 Jupiter masses in most cases, well below the brown dwarf mass range. The fraction of stellar multiplicity and of the sub-stellar companion occurrence in the star forming regions in Chamaeleon are compared to the statistics of our search, and possible reasons for the observed differences are discussed.
Stars show various amounts of radial velocity (RV) jitter due to varying stellar activity levels. The typical amount of RV jitter as a function of stellar age and observational timescale has not yet been systematically quantified, although it is ofte n larger than the instrumental precision of modern high-resolution spectrographs used for Doppler planet detection and characterization. We aim to empirically determine the intrinsic stellar RV variation for mostly G and K dwarf stars on different timescales and for different stellar ages independently of stellar models. We also focus on young stars ($lesssim$ 30 Myr), where the RV variation is known to be large. We use archival FEROS and HARPS RV data of stars which were observed at least 30 times spread over at least two years. We then apply the pooled variance (PV) technique to these data sets to identify the periods and amplitudes of underlying, quasiperiodic signals. We show that the PV is a powerful tool to identify quasiperiodic signals in highly irregularly sampled data sets. We derive activity-lag functions for 20 putative single stars, where lag is the timescale on which the stellar jitter is measured. Since the ages of all stars are known, we also use this to formulate an activity--age--lag relation which can be used to predict the expected RV jitter of a star given its age and the timescale to be probed. The maximum RV jitter on timescales of decades decreases from over 500 m/s for 5 Myr-old stars to 2.3 m/s for stars with ages of around 5 Gyr. The decrease in RV jitter when considering a timescale of only 1 d instead of 1 yr is smaller by roughly a factor of 4 for 5 Myr old stars, and a factor of 1.5 for stars with an age of 5 Gyr. The rate at which the RV jitter increases with lag strongly depends on stellar age and ranges from a few days for a few 10 Myr old stars to presumably decades for stars with an age of a few gigayears.
89 - A. Boehle 2019
Nearby stars are prime targets for exoplanet searches and characterization using a variety of detection techniques. Combining constraints from the complementary detection methods of high contrast imaging (HCI) and radial velocity (RV) can further con strain the planetary architectures of these systems because these methods place limits at different regions of the companion mass and semi-major axis parameter space. We aim to constrain the planetary architectures from the combination of HCI and RV data for 6 nearby stars within 6 pc: $tau$ Ceti, Kapteyns star, AX Mic, 40 Eri, HD 36395, and HD 42581. We compiled the sample from stars with available archival VLT/NACO HCI data at L$^{prime}$ band (3.8 $mu$m). The NACO data were fully reanalyzed using the state-of-the-art direct imaging pipeline PynPoint and combined with RV data from HARPS, Keck/HIRES, and CORALIE. A Monte Carlo approach was used to assess the completeness in the companion mass/semi-major axis parameter space from the combination of the HCI and RV data sets. We find that the HCI data add significant information to the RV constraints, increasing the completeness for certain companions masses/semi-major axes by up to 68 - 99% for 4 of the 6 stars in our sample, and by up to 1 - 13% for the remaining stars. The improvements are strongest for intermediate semi-major axes (15 - 40 AU), corresponding to the semi-major axes of the ice giants in our own solar system. The HCI mass limits reach 5 - 20 $M_{textrm{Jup}}$ in the background-limited regime, depending on the age of the star. Through the combination of HCI and RV data, we find that stringent constraints can be placed on the possible substellar companions in these systems. Applying these methods systematically to nearby stars will quantify our current knowledge of the planet population in the solar neighborhood and inform future observations.
We explore the impact of outer stellar companions on the occurrence rate of giant planets detected with radial velocities. We searched for stellar and planetary companions to a volume-limited sample of solar-type stars within 25 pc. Using adaptive op tics imaging from the Lick 3m and Palomar 200 Telescopes, we characterized the multiplicity of our sample stars, down to the bottom of the main sequence. With these data, we confirm field star multiplicity statistics from previous surveys. We combined three decades of radial velocity data from the California Planet Search with new RV data from Keck/HIRES and APF/Levy to search for planets in the same systems. Using an updated catalog of both stellar and planetary companions and injection/recovery tests to determine our sensitivity, we measured the occurrence rate of planets among the single and multiple star systems. We found that planets with masses of 0.1-10 $M_{Jup}$ and semi-major axes of 0.1-10 AU have an occurrence rate of $0.18^{+0.04}_{-0.03}$ planets per single star, and $0.12pm0.04$ planets per binary primary. Only one planet-hosting binary system in our sample had a binary separation $<100$ AU, and none had a separation $<50$ AU. We found planet occurrence rates of $0.20^{+0.07}_{-0.06}$ planets per star for binaries with separation $a_B > 100$ AU, and $0.04^{+0.04}_{-0.02}$ planets per star for binaries with separation $a_B<100$ AU. The similarity in the planet occurrence rate around single stars and wide primaries implies that wide binary systems should host more planets than single star systems, since they have more potential host stars. We estimated a system-wide planet occurrence rate of 0.3 planets per wide binary system for binaries with separations $a_B > 100$ AU. Finally, we found evidence that giant planets in binary systems have a different semi-major axis distribution than their counterparts in single star systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا