ترغب بنشر مسار تعليمي؟ اضغط هنا

A coronagraphic search for wide sub-stellar companions among members of the Ursa Major moving group

119   0   0.0 ( 0 )
 نشر من قبل Matthias Ammler-von Eiff
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of a survey to detect low-mass companions of UMa group members, carried out in 2003-2006 with NACO at the ESO VLT. While many extra-solar planets and planetary candidates have been found in close orbits around stars by the radial velocity and the transit method, direct detections at wider orbits are rare. The Ursa Major (UMa) group, a young stellar association at an age of about 200-600 Myr and an average distance of 25 pc, has not yet been addressed as a whole although its members represent a very interesting sample to search for and characterize sub-stellar companions by direct imaging. Our goal was to find or to provide detection limits on wide sub-stellar companions around nearby UMa group members using high-resolution imaging. We searched for faint companions around 20 UMa group members within 30 pc. The primaries were placed below a semi-transparent coronagraph, a rather rarely used mode of NACO, to increase the dynamic range of the images. In most cases, second epoch images of companion candidates were taken to check whether they share common proper motion with the primary. Our coronagraphic images rule out sub-stellar companions around the stars of the sample. A dynamical range of typically 13-15 mag in the Ks band was achieved at separations beyond 3 from the star. Candidates as faint as Ks ~ 20 were securely identified and measured. The survey is most sensitive between separations of 100 and 200 au but only on average because of the very different target distance. Field coverage reaches about 650 au for the most distant targets. Most of the 200 candidates are visible in two epochs. All of those were rejected being distant background objects.



قيم البحث

اقرأ أيضاً

Until now, most members of the Ursa Major (UMa) group of stars have been identified by means of kinematic criteria. However, in many cases kinematic criteria alone are insufficient to ascertain, whether an individual star is really a member of this g roup. Since photometric criteria are ineffective in the case of cool dwarf members, one must use spectroscopic criteria. Nevertheless, resulting membership criteria are inconclusive. We reanalyse spectroscopic properties of cool UMa group dwarfs. In particular, we study the distribution of iron abundance, the strength of the Li I absorption at 6708 A and the Li abundance, and the infilling of the core of the H alpha line. Twenty-five cool and northern bona-fide members are carefully selected from the literature. Homogeneously measured stellar parameters and iron abundances are given for all Sun-like stars selected, based on spectra of high resolution and high signal-to-noise ratio. In addition, we measure the Li equivalent width and abundance as well as the relative intensity of the H alpha core and the corresponding chromospheric flux. The studied stars infer an average Ursa Major group iron abundance of -0.03+-0.05 dex, which is higher by about 0.06 dex than determined elsewhere. The Li abundance derived of Ursa Major group dwarf stars is higher than in the Hyades at effective temperatures cooler than the Sun, but lower than in the younger Pleiades, a result which is independent of the exact value of the effective temperature adopted. The Sun-like and cooler dwarfs also display chromospheric infilling of the H alpha core. We present spectroscopic criteria that may be used to exclude non-members.
We have observed and spatially resolved a set of seven A-type stars in the nearby Ursa Major moving group with the Classic, CLIMB, and PAVO beam combiners on the CHARA Array. At least four of these stars have large rotational velocities ($v sin i$ $g trsim$ 170 $mathrm{km~s^{-1}}$) and are expected to be oblate. These interferometric measurements, the stars observed photometric energy distributions, and $v sin i$ values are used to computationally construct model oblate stars from which stellar properties (inclination, rotational velocity, and the radius and effective temperature as a function of latitude, etc.) are determined. The results are compared with MESA stellar evolution models (Paxton et al. 2011, 2013) to determine masses and ages. The value of this new technique is that it enables the estimation of the fundamental properties of rapidly rotating stars without the need to fully image the star. It can thus be applied to stars with sizes comparable to the interferometric resolution limit as opposed to those that are several times larger than the limit. Under the assumption of coevality, the spread in ages can be used as a test of both the prescription presented here and the MESA evolutionary code for rapidly rotating stars. With our validated technique, we combine these age estimates and determine the age of the moving group to be 414 $pm$ 23 Myr, which is consistent with, but much more precise than previous estimates.
142 - Marie-Eve Naud 2017
We present the results of a direct-imaging survey for very large separation ($>$100 au), companions around 95 nearby young K5-L5 stars and brown dwarfs. They are high-likelihood candidates or confirmed members of the young ($lessapprox$150 Myr) $beta $ Pictoris and AB Doradus moving groups (ABDMG) and the TW Hya, Tucana-Horologium, Columba, Carina, and Argus associations. Images in $i$ and $z$ filters were obtained with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South to search for companions down to an apparent magnitude of $zsim$22-24 at separations $gtrapprox$20 from the targets and in the remainder of the wide 5.5 $times$ 5.5 GMOS field of view. This allowed us to probe the most distant region where planetary-mass companions could be gravitationally bound to the targets. This region was left largely unstudied by past high-contrast imaging surveys, which probed much closer-in separations. This survey led to the discovery of a planetary-mass (9-13 $,M_{rm{Jup}}$) companion at 2000 au from the M3V star GU Psc, a highly probable member of ABDMG. No other substellar companions were identified. These results allowed us to constrain the frequency of distant planetary-mass companions (5-13 $,M_{rm{Jup}}$) to 0.84$_{-0.66}^{+6.73}$% (95% confidence) at semimajor axes between 500 and 5000 au around young K5-L5 stars and brown dwarfs. This is consistent with other studies suggesting that gravitationally bound planetary-mass companions at wide separations from low-mass stars are relatively rare.
A total of 28 young nearby stars (ages $leq 60$,Myr) have been observed in the K$_{rm s}$-band with the adaptive optics imager Naos-Conica of the Very Large Telescope at the Paranal Observatory in Chile. Among the targets are ten visual binaries and one triple system at distances between 10 and 130 pc, all previously known. During a first observing epoch a total of 20 faint stellar or sub-stellar companion-candidates were detected around seven of the targets. These fields, as well as most of the stellar binaries, were re-observed with the same instrument during a second epoch, about one year later. We present the astrometric observations of all binaries. Their analysis revealed that all stellar binaries are co-moving. In two cases (HD 119022 AB and FG Aqr B/C) indications for significant orbital motions were found. However, all sub-stellar companion-candidates turned out to be non-moving background objects except PZ Tel which is part of this project but whose results were published elsewhere. Detection limits were determined for all targets, and limiting masses were derived adopting three different age values; they turn out to be less than 10 Jupiter masses in most cases, well below the brown dwarf mass range. The fraction of stellar multiplicity and of the sub-stellar companion occurrence in the star forming regions in Chamaeleon are compared to the statistics of our search, and possible reasons for the observed differences are discussed.
244 - Ch. Rab , I. Kamp , C. Ginski 2019
Several detections of wide-orbit planet-mass/sub-stellar companions around young solar-like stars were reported in the last decade. The origin of those possible planets is still unclear but accretion tracers and VLT/SPHERE observations indicate that they are surrounded by circumplanetary material or even a circumplanetary disk. We want to investigate if the gas component of disks around wide-orbit companions is detectable with current and future (sub)mm telescopes and what constraints such gas observations can provide on the nature of the circumplanetary material and on the mass of the companion. We applied the radiation thermo-chemical disk code ProDiMo to model the dust and gas component of passive circumplanetary disks and produced realistic synthetic observables. We considered different companion properties, disk parameters and radiative environments and compared the resulting synthetic observables to telescope sensitivities and to existing dust observations. The main criterion for a successful detection is the size of the circumplanetary disk. At a distance of about 150 pc, a circumplanetary disk with an outer radius of about 10 au is detectable with ALMA in about 6 hours in optically thick CO lines. Other aspects such as the companions luminosity, disk inclination and background radiation fields are also relevant and should be considered to optimize the observing strategy for detection experiments. For most of the known wide-orbit planet-mass companions, their maximum theoretical disk size of one third of the Hill radius would be sufficient to allow detection of CO lines. It is therefore feasible to detect their gas disks and constrain the mass of the companion through the kinematic signature. Even in the case of non-detections such observations will provide stringent constraints on disk size and gas mass, information crucial for formation theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا