ترغب بنشر مسار تعليمي؟ اضغط هنا

XMM-Newton view of MS0735+7421: the most energetic AGN outburst in a galaxy cluster

90   0   0.0 ( 0 )
 نشر من قبل Myriam Gitti
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Myriam Gitti




اسأل ChatGPT حول البحث

We discuss the possible cosmological effects of powerful AGN outbursts in galaxy clusters by starting from the results of an XMM-Newton observation of the supercavity cluster MS0735+7421.


قيم البحث

اقرأ أيضاً

124 - Adam B. Mantz 2020
We present results from a 577 ks XMM-Newton observation of SPT-CL J0459-4947, the most distant cluster detected in the South Pole Telescope 2500 square degree (SPT-SZ) survey, and currently the most distant cluster discovered through its Sunyaev-Zeld ovich effect. The data confirm the clusters high redshift, $z=1.71 pm 0.02$, in agreement with earlier, less precise optical/IR photometric estimates. From the gas density profile, we estimate a characteristic mass of $M_{500}=(1.8 pm 0.2) times 10^{14}M_{Sun}$; cluster emission is detected above the background to a radius of $sim 2.2 r_{500}$, or approximately the virial radius. The intracluster gas is characterized by an emission-weighted average temperature of $7.2 pm 0.3$ keV and metallicity with respect to Solar of $0.37 pm 0.08$. For the first time at such high redshift, this deep data set provides a measurement of metallicity outside the cluster center; at radii $r > 0.3 r_{500}$, we find it to be $0.33 pm 0.17$, in good agreement with precise measurements at similar radii in the most nearby clusters, supporting an early enrichment scenario in which the bulk of the cluster gas is enriched to a universal metallicity prior to cluster formation, with little to no evolution thereafter. The leverage provided by the high redshift of this cluster tightens by a factor of 2 constraints on evolving metallicity models, when combined with previous measurements at lower redshifts.
We have observed with XMM-Newton four radiatively efficient active type 1 galaxies with black hole masses < 10^6 Msun, selected optically from the SDSS. We show here that their soft X-ray spectrum exhibits a soft excess with the same characteristics as that observed ubiquitously in radio-quiet Seyfert 1 galaxies and type 1 quasars, both in terms of temperatures and strength. However, even when the soft X-ray excess is modelled with a pure thermal disc, its luminosity turns out to be much lower than that expected from accretion theory for the given temperature, casting further doubts on a thermal interpretation for soft excesses. While alternative scenarios for the nature of the soft excess (namely smeared ionized absorption and disc reflection) cannot be distinguished on a pure statistical basis, we point out that the absorption model produces a strong correlation between absorbing column density and ionization state, which may be difficult to interpret and is most likely spurious. As for reflection, it does only invoke standard ingredients of any accretion model for radiatively efficient sources such as a hard X-rays source and a relatively cold (though partially ionized) accretion disc, and therefore seems the natural choice to explain the soft excess in most (if not all) cases. The reflection model is also consistent with the additional presence of a thermal disc component with the theoretically expected temperature (although, again, with smaller-than-expected total luminosity). The observed active galaxies are among the most variable in X-rays and their excess variance is among the largest. This is in line with their relatively small black hole mass and with expectations from simple power spectra models. (abridged)
111 - Allison Bostrom 2014
We present the first high signal-to-noise XMM-Newton observations of the broad-line radio galaxy 3C 411. After fitting various spectral models, an absorbed double power-law continuum and a blurred relativistic disk reflection model (kdblur) are found to be equally plausible descriptions of the data. While the softer power-law component ($Gamma$=2.11) of the double power-law model is entirely consistent with that found in Seyfert galaxies (and hence likely originates from a disk corona), the additional power law component is very hard ($Gamma$=1.05); amongst the AGN zoo, only flat-spectrum radio quasars have such hard spectra. Together with the very flat radio-spectrum displayed by this source, we suggest that it should instead be classified as a FSRQ. This leads to potential discrepancies regarding the jet inclination angle, with the radio morphology suggesting a large jet inclination but the FSRQ classification suggesting small inclinations. The kdblur model predicts an inner disk radius of at most 20 r$_g$ and relativistic reflection.
An XMM-Newton imaging spectroscopy analysis of the galaxy cluster A1644 is presented. A1644 is a complex merging system consisting of a main and a sub cluster. A trail of cool, metal-rich gas has been discovered close to the sub cluster. The combinat ion of results from X-ray, optical, and radio data, and a comparison to a hydrodynamical simulation suggest that the sub cluster has passed by the main cluster off-axis and a fraction of its gas has been stripped off during this process. Furthermore, for this merging system, simple effects are illustrated which can affect the use of clusters as cosmological probes. Specifically, double clusters may affect estimates of the cluster number density when treated as a single system. Mergers, as well as cool cores, can alter the X-ray luminosity and temperature measured for clusters, causing these values to differ from those expected in equilibrium.
IGRJ17361-4441 is a hard transient recently observed by the INTEGRAL satellite. The source, close to the center of gravity of the globular cluster NGC 6388, quickly became the target of follow-up observations conducted by the Chandra, Swift/XRT and R XTE observatories. Here, we concentrate in particular on a set of observations conducted by the XMM-Newton satellite during two slews, in order to get the spectral information of the source and search for spectral variations. The spectral parameters determined by the recent XMM-Newton slew observations were compared to the previously known results. The maximum unabsorbed $X$-ray flux in the 0.5-10 keV band as detected by the XMM-Newton slew observations is $simeq 4.5times 10^{-11}$ erg cm$^{-2}$ s$^{-1}$, i.e. consistent with that observed by the Swift/XRT satellite 15 days earlier. The spectrum seems to be marginally consistent ($Gammasimeq 0.93-1.63$) with that derived from the previous high energy observation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا