ترغب بنشر مسار تعليمي؟ اضغط هنا

An XMM-Newton View of the Radio Galaxy 3C 411

141   0   0.0 ( 0 )
 نشر من قبل Allison Bostrom
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Allison Bostrom




اسأل ChatGPT حول البحث

We present the first high signal-to-noise XMM-Newton observations of the broad-line radio galaxy 3C 411. After fitting various spectral models, an absorbed double power-law continuum and a blurred relativistic disk reflection model (kdblur) are found to be equally plausible descriptions of the data. While the softer power-law component ($Gamma$=2.11) of the double power-law model is entirely consistent with that found in Seyfert galaxies (and hence likely originates from a disk corona), the additional power law component is very hard ($Gamma$=1.05); amongst the AGN zoo, only flat-spectrum radio quasars have such hard spectra. Together with the very flat radio-spectrum displayed by this source, we suggest that it should instead be classified as a FSRQ. This leads to potential discrepancies regarding the jet inclination angle, with the radio morphology suggesting a large jet inclination but the FSRQ classification suggesting small inclinations. The kdblur model predicts an inner disk radius of at most 20 r$_g$ and relativistic reflection.



قيم البحث

اقرأ أيضاً

We present the analysis of five joint XMM-Newton/NuSTAR observations, 20 ks each and separated by 12 days, of the broad-line radio galaxy 3C 382. The data were obtained as part of a campaign performed in September-October 2016 simultaneously with VLB A. The radio data and their relation with the X-ray ones will be discussed in a following paper. The source exhibits a moderate flux variability in the UV/X-ray bands, and a limited spectral variability especially in the soft X-ray band. In agreement with past observations, we find the presence of a warm absorber, an iron K$alpha$ line with no associated Compton reflection hump, and a variable soft excess well described by a thermal Comptonization component. The data are consistent with a two-corona scenario, in which the UV emission and soft excess are produced by a warm ($kT simeq 0.6$ keV), optically thick ($tau simeq 20$) corona consistent with being a slab fully covering a nearly passive accretion disc, while the hard X-ray emission is due to a hot corona intercepting roughly 10 per cent of the soft emission. These results are remarkably similar to those generally found in radio-quiet Seyferts, thus suggesting a common accretion mechanism.
65 - P. M. Ogle 2004
We present XMM-Newton observations of the radio galaxy 3C 120. The hard X-ray spectrum contains a marginally resolved Fe I K-alpha emission line with FWHM=9,000 km/s and an equivalent width of 57 eV. The line arises via fluorescence in a broad-line r egion with covering fraction of 0.4. There is no evidence of relativistically broad Fe K-alpha, contrary to some previous reports. The normal equivalent widths of the X-ray and optical emission lines exclude a strongly beamed synchrotron component to the hard X-ray and optical continua. There is an excess of 0.3-2 keV soft X-ray continuum over an extrapolation of the hard X-ray power-law, which may arise in a disk corona. Analysis of an archival Chandra image shows that extended emission from the jet and other sources contributes <3% of the total X-ray flux. A break in the X-ray spectrum below 0.6 keV indicates an excess neutral hydrogen column density of N_H=1.57 * 10^21 cm^{-2}. However, the neutral absorber must have an oxygen abundance of <1/50 of the solar value to explain the absence of an intrinsic or intervening O I edge. There is no ionized absorption in the soft X-ray spectrum, but there is a weak, narrow O VIII Ly-alpha emission line. We do not detect previously claimed O VIII absorption from the intervening intergalactic medium. Radio observations at 37 GHz show a fast, high frequency flare starting 8 days after the XMM-Newton observation. However, this has no obvious effect on the X-ray spectrum. The X-ray spectrum, including the soft excess, became harder as the X-ray flux decreased, with an estimated pivot energy of 40 keV. The UV and soft X-ray fluxes are strongly correlated over the 120 ks duration of the XMM-Newton observation. This is qualitatively consistent with Comptonization of UV photons by a hot corona. (Abridged)
497 - L. Ballo 2011
We present the analysis of Suzaku and XMM-Newton observations of the broad-line radio galaxy (BLRG) 3C 111. Its high energy emission shows variability, a harder continuum with respect to the radio quiet AGN population, and weak reflection features. S uzaku found the source in a minimum flux level; a comparison with the XMM-Newton data implies an increase of a factor of 2.5 in the 0.5-10 keV flux, in the 6 months separating the two observations. The iron K complex is detected in both datasets, with rather low equivalent width(s). The intensity of the iron K complex does not respond to the change in continuum flux. An ultra-fast, high-ionization outflowing gas is clearly detected in the XIS data; the absorber is most likely unstable. Indeed, during the XMM-Newton observation, which was 6 months after, the absorber was not detected. No clear roll-over in the hard X-ray emission is detected, probably due to the emergence of the jet as a dominant component in the hard X-ray band, as suggested by the detection above ~ 100 keV with the GSO on-board Suzaku, although the present data do not allow us to firmly constrain the relative contribution of the different components. The fluxes observed by the gamma-ray satellites CGRO and Fermi would be compatible with the putative jet component if peaking at energies E ~ 100 MeV. In the X-ray band, the jet contribution to the continuum starts to be significant only above 10 keV. If the detection of the jet component in 3C 111 is confirmed, then its relative importance in the X-ray energy band could explain the different observed properties in the high-energy emission of BLRGs, which are otherwise similar in their other multiwavelength properties. Comparison between X-ray and gamma-ray data taken at different epochs suggests that the strong variability observed for 3C 111 is probably driven by a change in the primary continuum.
We present the analysis of an XMM-Newton observation of the M17 nebula. The X-ray point source population consists of massive O-type stars and a population of probable low-mass pre-main sequence stars. CEN1a,b and OI352, the X-ray brightest O-type st ars in M17, display hard spectra (kT of 3.8 and 2.6 keV) consistent with a colliding wind origin in binary/multiple systems. We show that the strong interstellar reddening towards the O-type stars of M17 yields huge uncertainties on their Lx/Lbol values. The low-mass pre-main sequence stars exhibit hard spectra resulting from a combination of high plasma temperatures and very large interstellar absorption. We find evidence for considerable long term (months to years) variability of these sources. M17 is one of the few star formation complexes in our Galaxy producing diffuse X-ray emission. We analyze the spectrum of this emission and compare it with previous studies. Finally, we discuss the Optical Monitor UV data obtained simultaneously with the X-ray images. We find very little correspondence between the UV and X-ray sources, indicating that the majority of the UV sources are foreground stars, whilst the bulk of the X-ray sources are deeply embedded in the M17 complex.
We want to explore the geometrical structure and mutual interactions of the innermost components of the broad line radio galaxy (BLRG) 3C 215, with particular interest in the accretion and ejection mechanisms involving the central supermassive black hole (SMBH). We compare these observational features with the ones of the RQ Seyfert 1 galaxies. Investigating their differences it is possible to understand more about the jet launching mechanisms, and why this phenomenon is efficient only in a small fraction of all the AGNs. Using high quality data from a $sim60$ ks observation with XMM-Newton, we carried out a detailed X-ray spectral analysis of 3C 215 in the broad energy range $0.5-10$ keV. We modeled the spectrum with an absorbed double power-law model for the primary continuum, reprocessed by reflection from ionized and cold neutral material and modified by relativistic blurring. We also compared our results with the ones obtained with previous multi-wavelength observations. We obtain a primary continuum photon index from the corona $Gamma_1=1.97pm0.06$ and evidence of a jet contribution, modeled as a power law with photon index $Gamma_2simeq1.29$. The reflector, possibly the accretion disk and portions of the broad-line region (BLR), is ionized ($logxi=2.31_{-0.27}^{+0.37} mathrm{erg s^{-1} cm}$) and relatively distant from the SMBH ($R_{in}>38 R_g$), where $R_g=GM_{BH}/c^2$ is the gravitational radius. The obscuring torus seems patchy, dust-poor and inefficient, while the jet emission shows a twisted and knotted geometry. We propose three scenarios in order to describe these characteristics: 1.) ADAF state in the inner disk; 2.) Slim accretion disk; 3.) sub-pc SMBH binary system (SMBHB).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا