ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep XMM-Newton Observations of the Most Distant SPT-SZ Galaxy Cluster

125   0   0.0 ( 0 )
 نشر من قبل Adam Mantz
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Adam B. Mantz




اسأل ChatGPT حول البحث

We present results from a 577 ks XMM-Newton observation of SPT-CL J0459-4947, the most distant cluster detected in the South Pole Telescope 2500 square degree (SPT-SZ) survey, and currently the most distant cluster discovered through its Sunyaev-Zeldovich effect. The data confirm the clusters high redshift, $z=1.71 pm 0.02$, in agreement with earlier, less precise optical/IR photometric estimates. From the gas density profile, we estimate a characteristic mass of $M_{500}=(1.8 pm 0.2) times 10^{14}M_{Sun}$; cluster emission is detected above the background to a radius of $sim 2.2 r_{500}$, or approximately the virial radius. The intracluster gas is characterized by an emission-weighted average temperature of $7.2 pm 0.3$ keV and metallicity with respect to Solar of $0.37 pm 0.08$. For the first time at such high redshift, this deep data set provides a measurement of metallicity outside the cluster center; at radii $r > 0.3 r_{500}$, we find it to be $0.33 pm 0.17$, in good agreement with precise measurements at similar radii in the most nearby clusters, supporting an early enrichment scenario in which the bulk of the cluster gas is enriched to a universal metallicity prior to cluster formation, with little to no evolution thereafter. The leverage provided by the high redshift of this cluster tightens by a factor of 2 constraints on evolving metallicity models, when combined with previous measurements at lower redshifts.

قيم البحث

اقرأ أيضاً

We have obtained deep SZ observations towards 15 of the apparently hottest XMM Cluster Survey (XCS) clusters that can be observed with the Arcminute Microkelvin Imager (AMI). We use a Bayesian analysis to quantify the significance of our SZ detection s. We detect the SZ effect at high significance towards three of the clusters and at lower significance for a further two clusters. Towards the remaining ten clusters, no clear SZ signal was measured. We derive cluster parameters using the XCS mass estimates as a prior in our Bayesian analysis. For all AMI-detected clusters, we calculate large-scale mass and temperature estimates while for all undetected clusters we determine upper limits on these parameters. We find that the large- scale mean temperatures derived from our AMI SZ measurements (and the upper limits from null detections) are substantially lower than the XCS-based core-temperature estimates. For clusters detected in the SZ, the mean temperature is, on average, a factor of 1.4 lower than temperatures from the XCS. For clusters undetected in SZ, the average 68% upper limit on the mean temperature is a factor of 1.9 below the XCS temperature.
We studied the intracluster medium of the galaxy cluster CIZA J2242.8+5301 using deep XMM-Newton observations. The cluster hosts a remarkable 2-Mpc long, ~50-kpc wide radio relic that has been nicknamed the Sausage. A smaller, more irregular counter- relic is also present, along with a faint giant radio halo. We analysed the distribution of the ICM physical properties, and searched for shocks by trying to identify density and temperature discontinuities. East of the southern relic, we find evidence of shock compression corresponding to a Mach number of 1.3, and speculate that the shock extends beyond the length of the radio structure. The ICM temperature increases at the northern relic. More puzzling, we find a wall of hot gas east of the cluster centre. A partial elliptical ring of hot plasma appears to be present around the merger. While radio observations and numerical simulations predict a simple merger geometry, the X-ray results point towards a more complex merger scenario.
The XMM-Newton Distant Cluster Project (XDCP) aims at the identification of a well defined sample of X-ray selected clusters of galaxies at redshifts z>0.8. We present a catalogue of the extended sources in one the deepest ~250 ksec XMM-Newton fields targeting LBQS 2215-175 covering the CFHTLS deep field four. The cluster identification is based, among others, on deep imaging with the ESO VLT and from the CFHT legacy survey. The confirmation of cluster candidates is done by VLT/FORS2 multi-object spectroscopy. Photometric redshifts from the CFHTLS D4 are utilized to confirm the effectiveness of the X-ray cluster selection method. The survey sensitivity is computed with extensive simulations. At a flux limit of S(0.5-2.0 keV) ~ 2.5e-15 erg/s we achieve a completeness level higher than 50% in an area of ~0.13 square degrees. We detect six galaxy clusters above this limit with optical counterparts, of which 5 are new spectroscopic discoveries. Two newly discovered X-ray luminous galaxy clusters are at z>1.0, another two at z=0.41 and one at z=0.34. For the most distant X-ray selected cluster in this field at z=1.45 we find additional (active) member galaxies from both X-ray and spectroscopic data. Additionally, we find evidence of large scale structures at moderate redshifts of z=0.41 and z=0.34. The quest for distant clusters in archival XMM-Newton data has led to the detection of six clusters in a single field, making XMM-Newton an outstanding tool for cluster surveys. Three of these clusters are at z>1, which emphasises the valuable contribution of small, yet deep surveys to cosmology. Beta-models are appropriate descriptions for the cluster surface brightness to perform cluster detection simulations in order to compute the X-ray selection function. The constructed logN-logS tends to favour a scenario where no evolution in the cluster X-ray luminosity function (XLF) takes place.
We present first results from a galaxy population study in the highest redshift galaxy clusters identified in the 2500 deg$^2$ South Pole Telescope Sunyaev Zeldovich effect (SPT-SZ) survey. The cluster selection is to first order independent of galax y properties, making the SPT-SZ sample particularly well suited for cluster galaxy population studies. We carry out a 4-band imaging campaign with the {it Hubble} and {it Spitzer} Space Telescopes of the five $zgtrsim 1.4$, S/N$_{SZE}>$5 clusters, that are among the rarest most massive clusters known at this redshift. All five show clear overdensities of red galaxies whose colors agree with the initial cluster redshift estimates. The highest redshift cluster in this sample, SPT-CLJ0459-4947 at $zsim1.72$, is the most distant $M_{500}>10^{14}~M_{odot}$ ICM-selected cluster discovered thus far, and is one of only three known clusters in this mass range at $zgtrsim 1.7$, regardless of selection. Based on UVJ-like photometric classification of quiescent and star-forming galaxies, the passive fraction in the cluster central regions ($r/r_{500}<0.7$) is higher than in the field at the same redshift, with corresponding environmental quenching efficiencies typically in the range $sim0.5-0.8$ for stellar masses $log(M/M_{odot})>10.85$. We have explored the impact of emission from star formation on the selection of this sample, concluding that all five clusters studied here would still have been detected with S/N$_{SZE}>$5, even if they had the same passive fraction as measured in the field. Our results thus point towards an efficient suppression of star formation in massive galaxies in the central regions of the most massive clusters, occurring already earlier than $zsim1.5$. [Abridged]
We present the largest sample of spectroscopically confirmed X-ray luminous high-redshift galaxy clusters to date comprising 22 systems in the range 0.9<z<sim1.6 as part of the XMM-Newton Distant Cluster Project (XDCP). All systems were initially sel ected as extended X-ray sources over 76.1 deg^2 of non-contiguous deep archival XMM-Newton coverage. We test and calibrate the most promising two-band redshift estimation techniques based on the R-z and z-H colors for efficient distant cluster identifications and find a good redshift accuracy performance of the z-H color out to at least zsim1.5, while the redshift evolution of the R-z color leads to increasingly large uncertainties at z>sim0.9. We present first details of two newly identified clusters, XDCP J0338.5+0029 at z=0.916 and XDCP J0027.2+1714 at z=0.959, and investigate the Xray properties of SpARCS J003550-431224 at z=1.335, which shows evidence for ongoing major merger activity along the line-of-sight. We provide X-ray properties and luminosity-based total mass estimates for the full sample, which has a median system mass of M200simeq2times10^14Modot. In contrast to local clusters, the z>0.9 systems do mostly not harbor central dominant galaxies coincident with the X-ray centroid position, but rather exhibit significant BCG offsets from the X-ray center with a median value of about 50 kpc in projection and a smaller median luminosity gap to the second-ranked galaxy of sim0.3mag. We estimate a fraction of cluster-associated NVSS 1.4GHz radio sources of about 30%, preferentially located within 1 from the X-ray center. The galaxy populations in z>sim1.5 cluster environments show first evidence for drastic changes on the high-mass end of galaxies and signs for a gradual disappearance of a well-defined cluster red-sequence as strong star formation activity is observed in an increasing fraction of massive galaxies down to the densest core regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا