ﻻ يوجد ملخص باللغة العربية
Prominent in the `Field of Streams -- the Sloan Digital Sky Survey map of substructure in the Galactic halo -- is an `Orphan Stream without obvious progenitor. In this numerical study, we show a possible connection between the newly found dwarf satellite Ursa Major II (UMa II) and the Orphan Stream. We provide numerical simulations of the disruption of UMa II that match the observational data on the position, distance and morphology of the Orphan Stream. We predict the radial velocity of UMa II as -100 km/s as well as the existence of strong velocity gradients along the Orphan Stream. The velocity dispersion of UMa II is expected to be high, though this can be caused both by a high dark matter content or by the presence of unbound stars in a disrupted remnant. However, the existence of a gradient in the mean radial velocity across UMa II provides a clear-cut distinction between these possibilities. The simulations support the idea that some of the anomalous, young halo globular clusters like Palomar 1 or Arp 2 or Ruprecht 106 may be physically associated with the Orphan Stream.
Using a shallow, two-color survey carried out with the Dark Energy Camera, we detect the southern, possibly trailing arm of the Orphan Stream. The stream is reliably detected to a declination of $-38^circ$, bringing the total known length of the Orph
We have developed a method for estimating the properties of the progenitor dwarf galaxy from the tidal stream of stars that were ripped from it as it fell into the Milky Way. In particular, we show that the mass and radial profile of a progenitor dwa
A large number of new members ($sim$150) of the Cetus Stream (CS) were identified from their clustering features in dynamical space using 6D kinematic data by combining LAMOST DR5 and Gaia DR2 surveys. They map a diffuse structure that extends over a
We construct test-particle orbits and simple N-body models that match the properties of the giant stellar stream observed to the south of M31, using the model of M31s potential derived in the companion paper by Geehan et al. (2006). We introduce a si
We identify gravitationally bound structures in the Ursa Major region using positions, velocities and photometry from the Sloan Digital Sky Survey (SDSS DR7) and the Third Reference Catalogue of Bright Galaxies (RC3). A friends-of-friends algorithm i