ترغب بنشر مسار تعليمي؟ اضغط هنا

Is NGC 5824 the Core of the Progenitor of the Cetus Stream?

148   0   0.0 ( 0 )
 نشر من قبل Chang Jiang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jiang Chang




اسأل ChatGPT حول البحث

A large number of new members ($sim$150) of the Cetus Stream (CS) were identified from their clustering features in dynamical space using 6D kinematic data by combining LAMOST DR5 and Gaia DR2 surveys. They map a diffuse structure that extends over at least 100 degrees in the northern and southern Galactic hemispheres, at heliocentric distances between 20 to 50 kpc. Taking advantage of this expanded dataset, we model the stream with a suite of tailored N-body simulations. Our findings exclude the possibility that the NGC 5824 globular cluster is the core of the progenitor of the stream, as postulated by previous studies. Our best models, which successfully reproduce the features of the CS indicate that the progenitor is likely a dwarf galaxy of $sim$ 2$times$10$^9$M$_{odot}$, with a diffuse disc morphology. The merger occured $sim$ 5 Gyr ago and since then it has experienced approximately eight apo-center passages. Our results suggest that NGC 5824 was either a globular cluster situated off-centre in the dwarf progenitor or, alternatively, it was the nuclear star cluster of another dwarf galaxy that has very similar orbit as the progenitor of the CS. In both scenarios, the progenitor systems would leave streams around NGC 5824, but with distinct distance distributions. To discriminate between these scenarios, the detection and accurate distance measurements of the predicted stream around the GC are crucial, which will be possible in the upcoming LSST era. Our simulations also predict that part of the Southern Cetus stream is very likely the newly discovered Palca stream, and possibly related to another, more diffuse Southern substructure, the Eridanus-Pheonix overdensity.



قيم البحث

اقرأ أيضاً

We use a novel cluster identification tool StarGO to explore the metal poor ([Fe/H] $<$ -1.5) outer stellar halo (d $>$ 15 kpc) of the Milky Way using data from Gaia, LAMOST and SDSS. Our method is built using an unsupervised learning algorithm, a se lf-organizing map, which trains a 2-D neural network to learn the topological structures of a data set from an n-D input space. Using a 4-D space of angular momentum and orbital energy, we identify three distinct groups corresponding to the Sagittarius, Orphan, and Cetus Streams. For the first time we are able to discover a northern counterpart to the Cetus stream. We test the robustness of this new detection using mock data and find that the significance is more than 5-sigma. We also find that the existing southern counterpart bifurcates into two clumps with different radial velocities. By exploiting the visualization power of StarGO, we attach MW globular clusters to the same trained neural network. The Sagittarius stream is found to have five related clusters, confirming recent literature studies, and the Cetus stream has one associated cluster, NGC 5824. This latter association has previously been postulated, but can only now be truly confirmed thanks to the high-precision Gaia proper motions and large numbers of stellar spectra from LAMOST. The large metallicity dispersion of the stream indicates that the progenitor cannot be a globular cluster. Given the mean metallicity of the stream, we propose that the stream is the result of a merger of a low-mass dwarf galaxy that hosted a large nuclear star cluster (NGC 5824).
143 - M. Fellhauer 2006
Prominent in the `Field of Streams -- the Sloan Digital Sky Survey map of substructure in the Galactic halo -- is an `Orphan Stream without obvious progenitor. In this numerical study, we show a possible connection between the newly found dwarf satel lite Ursa Major II (UMa II) and the Orphan Stream. We provide numerical simulations of the disruption of UMa II that match the observational data on the position, distance and morphology of the Orphan Stream. We predict the radial velocity of UMa II as -100 km/s as well as the existence of strong velocity gradients along the Orphan Stream. The velocity dispersion of UMa II is expected to be high, though this can be caused both by a high dark matter content or by the presence of unbound stars in a disrupted remnant. However, the existence of a gradient in the mean radial velocity across UMa II provides a clear-cut distinction between these possibilities. The simulations support the idea that some of the anomalous, young halo globular clusters like Palomar 1 or Arp 2 or Ruprecht 106 may be physically associated with the Orphan Stream.
We have used a combination of high-resolution Hubble Space Telescope WFPC2 and wide-field ground-based observations, in ultraviolet and optical bands, to study the blue straggler star population of the massive outer-halo globular cluster NGC 5824, ov er its entire radial extent. We have computed the center of gravity of the cluster and constructed the radial density profile, from detailed star counts. The profile is well reproduced by a Wilson model with a small core (r_c simeq 4.4 arcsec) and a concentration parameter c simeq 2.74. We also present the first age determination for this cluster. From the comparison with isochrones, we have found t=13pm0.5 Gyr. We discuss this result in the context of the observed age-metallicity relation of Galactic globular clusters. A total of 60 bright blue stragglers has been identified. Their radial distribution is found to be bimodal, with a central peak, a well defined minimum at r sim 20 arcsec, and an upturn at large radii. In the framework of the dynamical clock defined by Ferraro et al. (2012), this feature suggests that NGC 5824 is a cluster of intermediate dynamical age.
We focus on the evidence of a past minor merger discovered in the halo of the Andromeda galaxy (M31). Previous N-body studies have enjoyed moderate success in producing the observed giant stellar stream (GSS) and stellar shells in M31s halo. The obse rved distribution of stars in the halo of M31 shows an asymmetric surface brightness profile across the GSS; however, the effect of the morphology of the progenitor galaxy on the internal structure of the GSS requires further investigation in theoretical studies. To investigate the physical connection between the characteristic surface brightness in the GSS and the morphology of the progenitor dwarf galaxy, we systematically vary the thickness, rotation velocity and initial inclination of the disc dwarf galaxy in N-body simulations. The formation of the observed structures appears to be dominated by the progenitors rotation. Besides reproducing the observed GSS and two shells in detail, we predict additional structures for further observations. We predict the detectability of the progenitors stellar core in the phase-space density distribution, azimuthal metallicity gradient of the western shell-like structure and an additional extended shell in the north-western direction that may constrain the properties of the progenitor galaxy.
We age-date the stellar populations associated with 12 historic nearby core-collapse supernovae (CCSNe) and 2 supernova impostors, and from these ages, we infer their initial masses and associated uncertainties. To do this, we have obtained new HST i maging covering these CCSNe. Using these images, we measure resolved stellar photometry for the stars surrounding the locations of the SNe. We then fit the color-magnitude distributions of this photometry with stellar evolution models to determine the ages of any young existing populations present. From these age distributions, we infer the most likely progenitor mass for all of the SNe in our sample. We find ages between 4 and 50 Myr, corresponding to masses from 7.5 to 59 solar masses. There were no SNe that lacked a young population within 50~pc. Our sample contains 4 type Ib/c SNe; their masses have a wide range of values, suggesting that the progenitors of stripped-envelope SNe are binary systems. Both impostors have masses constrained to be $lesssim$7.5 solar masses. In cases with precursor imaging measurements, we find that age-dating and precursor imaging give consistent progenitor masses. This consistency implies that, although the uncertainties for each technique are significantly different, the results of both are reliable to the measured uncertainties. We combine these new measurements with those from our previous work and find that the distribution of 25 core-collapse SNe progenitor masses is consistent with a standard Salpeter power-law mass function, no upper mass cutoff, and an assumed minimum mass for core-collapse of 7.5~M$_{odot}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا