ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigating the Andromeda Stream: II. Orbital Fits and Properties of the Progenitor

135   0   0.0 ( 0 )
 نشر من قبل Mark Fardal
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. A. Fardal




اسأل ChatGPT حول البحث

We construct test-particle orbits and simple N-body models that match the properties of the giant stellar stream observed to the south of M31, using the model of M31s potential derived in the companion paper by Geehan et al. (2006). We introduce a simple approximation to account for the difference in position between the stream and the orbit of the progenitor; this significantly affects the best-fitting orbits. The progenitor orbits we derive have orbital apocenter $sim 60 kpc$ and pericenter $sim 3 kpc$, though these quantities vary somewhat with the current orbital phase of the progenitor which is as yet unknown. Our best combined fit to the stream and galaxy properties implies a mass within 125 kpc of M31 of $(7.4 pm 1.2) times 10^{11} Msun$. Based on its length, width, luminosity, and velocity dispersion, we conclude that the stream originates from a progenitor satellite with mass $M_s sim 10^9 Msun$, and at most modest amounts of dark matter; the estimate of $M_s$ is again correlated with the phase of the progenitor. M31 displays a large number of faint features in its inner halo which may be progenitors or continuations of the stream. While the orbital fits are not constrained enough for us to conclusively identify the progenitor, we can identify several plausible candidates, of which a feature in the planetary nebula distribution found by Merrett et al. is the most plausible, and rule out several others. We make predictions for the kinematic properties of the successful candidates. These may aid in observational identification of the progenitor object, which would greatly constrain the allowed models of the stream.



قيم البحث

اقرأ أيضاً

We focus on the evidence of a past minor merger discovered in the halo of the Andromeda galaxy (M31). Previous N-body studies have enjoyed moderate success in producing the observed giant stellar stream (GSS) and stellar shells in M31s halo. The obse rved distribution of stars in the halo of M31 shows an asymmetric surface brightness profile across the GSS; however, the effect of the morphology of the progenitor galaxy on the internal structure of the GSS requires further investigation in theoretical studies. To investigate the physical connection between the characteristic surface brightness in the GSS and the morphology of the progenitor dwarf galaxy, we systematically vary the thickness, rotation velocity and initial inclination of the disc dwarf galaxy in N-body simulations. The formation of the observed structures appears to be dominated by the progenitors rotation. Besides reproducing the observed GSS and two shells in detail, we predict additional structures for further observations. We predict the detectability of the progenitors stellar core in the phase-space density distribution, azimuthal metallicity gradient of the western shell-like structure and an additional extended shell in the north-western direction that may constrain the properties of the progenitor galaxy.
143 - M. Fellhauer 2006
Prominent in the `Field of Streams -- the Sloan Digital Sky Survey map of substructure in the Galactic halo -- is an `Orphan Stream without obvious progenitor. In this numerical study, we show a possible connection between the newly found dwarf satel lite Ursa Major II (UMa II) and the Orphan Stream. We provide numerical simulations of the disruption of UMa II that match the observational data on the position, distance and morphology of the Orphan Stream. We predict the radial velocity of UMa II as -100 km/s as well as the existence of strong velocity gradients along the Orphan Stream. The velocity dispersion of UMa II is expected to be high, though this can be caused both by a high dark matter content or by the presence of unbound stars in a disrupted remnant. However, the existence of a gradient in the mean radial velocity across UMa II provides a clear-cut distinction between these possibilities. The simulations support the idea that some of the anomalous, young halo globular clusters like Palomar 1 or Arp 2 or Ruprecht 106 may be physically associated with the Orphan Stream.
Kodi is of one of the worlds largest open-source streaming platforms for viewing video content. Easily installed Kodi add-ons facilitate access to online pirated videos and streaming content by facilitating the user to search and view copyrighted vid eos with a basic level of technical knowledge. In some countries, there have been paid child sexual abuse organizations publishing/streaming child abuse material to an international paying clientele. Open source software used for viewing videos from the Internet, such as Kodi, is being exploited by criminals to conduct their activities. In this paper, we describe a new method to quickly locate Kodi artifacts and gather information for a successful prosecution. We also evaluate our approach on different platforms; Windows, Android and Linux. Our experiments show the file location, artifacts and a history of viewed content including their locations from the Internet. Our approach will serve as a resource to forensic investigators to examine Kodi or similar streaming platforms.
147 - Jiang Chang 2020
A large number of new members ($sim$150) of the Cetus Stream (CS) were identified from their clustering features in dynamical space using 6D kinematic data by combining LAMOST DR5 and Gaia DR2 surveys. They map a diffuse structure that extends over a t least 100 degrees in the northern and southern Galactic hemispheres, at heliocentric distances between 20 to 50 kpc. Taking advantage of this expanded dataset, we model the stream with a suite of tailored N-body simulations. Our findings exclude the possibility that the NGC 5824 globular cluster is the core of the progenitor of the stream, as postulated by previous studies. Our best models, which successfully reproduce the features of the CS indicate that the progenitor is likely a dwarf galaxy of $sim$ 2$times$10$^9$M$_{odot}$, with a diffuse disc morphology. The merger occured $sim$ 5 Gyr ago and since then it has experienced approximately eight apo-center passages. Our results suggest that NGC 5824 was either a globular cluster situated off-centre in the dwarf progenitor or, alternatively, it was the nuclear star cluster of another dwarf galaxy that has very similar orbit as the progenitor of the CS. In both scenarios, the progenitor systems would leave streams around NGC 5824, but with distinct distance distributions. To discriminate between these scenarios, the detection and accurate distance measurements of the predicted stream around the GC are crucial, which will be possible in the upcoming LSST era. Our simulations also predict that part of the Southern Cetus stream is very likely the newly discovered Palca stream, and possibly related to another, more diffuse Southern substructure, the Eridanus-Pheonix overdensity.
We present the first comparison between the lifetime star formation histories (SFHs) of M31 and Milky Way (MW) satellites. Using the Advanced Camera for Surveys aboard the Hubble Space Telescope, we obtained deep optical imaging of Andromeda II (M$_{ V} = -$12.0; log(M$_{star}$/M$_{odot}$) $sim$ 6.7) and Andromeda XVI (M$_{V} = -$7.5; log(M$_{star}$/M$_{odot}$) $sim$ 4.9) yielding color-magnitude diagrams that extend at least 1 magnitude below the oldest main sequence turnoff, and are similar in quality to those available for the MW companions. And II and And XVI show strikingly similar SFHs: both formed 50-70% of their total stellar mass between 12.5 and 5 Gyr ago (z$sim$5-0.5) and both were abruptly quenched $sim$ 5 Gyr ago (z$sim$0.5). The predominance of intermediate age populations in And XVI makes it qualitatively different from faint companions of the MW and clearly not a pre-reionization fossil. Neither And II nor And XVI appears to have a clear analog among MW companions, and the degree of similarity in the SFHs of And II and And XVI is not seen among comparably faint-luminous pairs of MW satellites. These findings provide hints that satellite galaxy evolution may vary substantially among hosts of similar stellar mass. Although comparably deep observations of more M31 satellites are needed to further explore this hypothesis, our results underline the need for caution when interpreting satellite galaxies of an individual system in a broader cosmological context.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا