ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark and baryonic matter in the MareNostrum Universe

113   0   0.0 ( 0 )
 نشر من قبل Stefan Gottloeber
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Gottloeber




اسأل ChatGPT حول البحث

We report some results from one of the largest hydrodynamical cosmological simulations of large scale structures that has been done up to date. The MareNostrum Universe SPH simulation consists of 2 billion particles (2 times 1024^3) in a cubic box of 500 h^-1 Mpc on a side. This simulation has been done in the MareNostrum parallel supercomputer at the Barcelona SuperComputer Center. Due to the large simulated volume and good mass resolution, our simulated catalog of dark matter halos comprises more than half a million objects with masses larger than a typical Milky Way galaxy halo. From this dataset we have studied several statistical properties such as the evolution of the halo mass function, the void distribution, the shapes of dark and gas halos and the large scale distribution of baryons.



قيم البحث

اقرأ أيضاً

127 - Stefan Gottloeber 2006
The MareNostrum Universe is one of the biggest SPH cosmological simulations done so far. It contains more than 2 billion particles (2 times 1024^3) in a 500 Mpc/h cubic volume. This simulation has been performed on the MareNostrum supercomputer at th e Barcelona Supercomputer Center. We have obtained more than 0.5 million halos with masses greater than a typical Milky Way galaxy halo. We report results about the halo mass function, the shapes of dark matter and gas distributions in halos, the baryonic fraction in galaxy clusters and groups, baryon oscillations in the dark matter and the halo power spectra as well as the distribution and evolution of the gas fraction at large scales.
We discuss the correlation between dark matter and Higgs decays in gauge theories where the dark matter is predicted from anomaly cancellation. In these theories, the Higgs responsible for the breaking of the gauge symmetry generates the mass for the dark matter candidate. We investigate the Higgs decays in the minimal gauge theory for Baryon number. After imposing the dark matter density and direct detection constraints, we find that the new Higgs can have a large branching ratio into two photons or into dark matter. Furthermore, we discuss the production channels and the unique signatures at the Large Hadron Collider.
We perform a systematic analysis of models with GeV-scale dark matter coupled to baryons and leptons. Such theories provide a natural framework to explain the matter-antimatter asymmetry of the universe. We find that only a few baryonic dark matter m odels are free from tree-level proton decay without explicitly imposing baryon number conservation. We enumerate those cases and provide a brief overview of their phenomenology. We then focus on a leptonic dark matter model for a more detailed discussion of the baryon asymmetry generation via leptogenesis, the symmetry restoration in the dark sector and the expected dark matter annihilation signals in indirect detection experiments.
We combine spatially resolved ASCA temperature data with ROSAT imaging data to constrain the total mass distribution in the cluster A401, assuming that the cluster is in hydrostatic equilibrium. We obtain a total mass within the X-ray core (290/h_50 kpc) of 1.2[+0.1,-0.5] 10^14 /h_50 Msun at the 90% confidence level, 1.3 times larger than the isothermal estimate. The total mass within r_500 (1.7/h_50 Mpc) is M_500 = 0.9[+0.3,-0.2] 10^15/ h_50 Msun at 90% confidence, in agreement with the optical virial mass estimate, and 1.2 times smaller than the isothermal estimate. Our M_500 value is 1.7 times smaller than that estimated using the mass-temperature scaling law predicted by simulations. The best fit dark matter density profile scales as r^{-3.1} at large radii, which is consistent with the Navarro, Frenk & White (NFW) ``universal profile as well as the King profile of the galaxy density in A401. From the imaging data, the gas density profile is shallower than the dark matter profile, scaling as r^{-2.1} at large radii, leading to a monotonically increasing gas mass fraction with radius. Within r_500 the gas mass fraction reaches a value of f_gas = 0.21[+0.06,-0.05] h_50^{-3/2} (90% confidence errors). Assuming that f_gas (plus an estimate of the stellar mass) is the universal value of the baryon fraction, we estimate the 90% confidence upper limit of the cosmological matter density to be Omega_m < 0.31.
The cosmic baryonic fluid at low redshifts is similar to a fully developed turbulence. In this work, we use simulation samples produced by the hybrid cosmological hydrodynamical/N-body code, to investigate on what scale the deviation of spatial distr ibutions between baryons and dark matter is caused by turbulence. For this purpose, we do not include the physical processes such as star formation, supernovae (SNe) and active galactic nucleus (AGN) feedback into our code, so that the effect of turbulence heating for IGM can be exhibited to the most extent. By computing cross-correlation functions $r_m(k)$ for the density field and $r_v(k)$ for the velocity field of both baryons and dark matter, we find that deviations between the two matter components for both density field and velocity field, as expected, are scale-dependent. That is, the deviations are the most significant at small scales and gradually diminish on larger and larger scales. Also, the deviations are time-dependent, i.e. they become larger and larger with increasing cosmic time. The most emphasized result is that the spatial deviations between baryons and dark matter revealed by velocity field are more significant than that by density field. At z = 0, at the 1% level of deviation, the deviation scale is about 3.7 $h^{-1}$Mpc for density field, while as large as 23 $h^{-1}$Mpc for velocity field, a scale that falls within the weakly non-linear regime for the structure formation paradigm. Our results indicate that the effect of turbulence heating is indeed comparable to that of these processes such as SN and AGN feedback.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا