ترغب بنشر مسار تعليمي؟ اضغط هنا

Turbulence-induced deviation between baryonic field and dark matter field in the spatial distribution of the Universe

415   0   0.0 ( 0 )
 نشر من قبل Huayu Yang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The cosmic baryonic fluid at low redshifts is similar to a fully developed turbulence. In this work, we use simulation samples produced by the hybrid cosmological hydrodynamical/N-body code, to investigate on what scale the deviation of spatial distributions between baryons and dark matter is caused by turbulence. For this purpose, we do not include the physical processes such as star formation, supernovae (SNe) and active galactic nucleus (AGN) feedback into our code, so that the effect of turbulence heating for IGM can be exhibited to the most extent. By computing cross-correlation functions $r_m(k)$ for the density field and $r_v(k)$ for the velocity field of both baryons and dark matter, we find that deviations between the two matter components for both density field and velocity field, as expected, are scale-dependent. That is, the deviations are the most significant at small scales and gradually diminish on larger and larger scales. Also, the deviations are time-dependent, i.e. they become larger and larger with increasing cosmic time. The most emphasized result is that the spatial deviations between baryons and dark matter revealed by velocity field are more significant than that by density field. At z = 0, at the 1% level of deviation, the deviation scale is about 3.7 $h^{-1}$Mpc for density field, while as large as 23 $h^{-1}$Mpc for velocity field, a scale that falls within the weakly non-linear regime for the structure formation paradigm. Our results indicate that the effect of turbulence heating is indeed comparable to that of these processes such as SN and AGN feedback.

قيم البحث

اقرأ أيضاً

We consider a dark matter halo (DMH) of a spherical galaxy as a Bose-Einstein condensate of the ultra-light axions interacting with the baryonic matter. In the mean-field limit, we have derived the integro-differential equation of the Hartree-Fock ty pe for the spherically symmetrical wave function of the DMH component. This equation includes two independent dimensionless parameters: (i) b{eta}- the ratio of baryon and axion total mases and (ii) {xi}- the ratio of characteristic baryon and axion spatial parameters. We extended our dissipation algorithm for studying numerically the ground state of the axion halo in the gravitational field produced by the baryonic component. We calculated the characteristic size, Xc, of DMH as a function of b{eta} and {xi} and obtained an analytical approximation for Xc.
81 - C. Alard 2013
The cosmological simulations indicates that the dark matter haloes have specific self similar properties. However the halo similarity is affected by the baryonic feedback, the momentum injected by the supernovae re-shape the dark matter core and tran sform it to a flat density core, with a scale length imposed by the baryonic feedback. Additionally the baryon feedback impose also an equilibrium condition, which when coupled with the imposed baryonic scale length induce a new type of similarity. The new self similar solution implies that the acceleration generated by dark matter is scale free, which in turns implies that the baryonic acceleration at a reference radius is also scale free. Constant dark matter and baryonic accelerations at a reference radius have effectively been observed for a large class of different galaxies, which is in support of this approach. The new self similar properties implies that the total acceleration at larger distances is scale free, the transition between the dark matter and baryons dominated regime occurs at a constant acceleration, and the maximum of the velocity curve which defines the amplitude of the velocity curve at larger distances is proportional to $M^{frac{1}{4}}$. These results demonstrates that in this self similar model, cold dark matter is consistent with the basics of MOND phenomenology for the galaxies. In agreement with the observation the coincidence between the self similar model and MOND is expected to break at the scale of clusters of galaxies. Some numerical experiments shows that the behavior of the density near the origin is closely approximated by a Einasto profile.
112 - S. Gottloeber 2006
We report some results from one of the largest hydrodynamical cosmological simulations of large scale structures that has been done up to date. The MareNostrum Universe SPH simulation consists of 2 billion particles (2 times 1024^3) in a cubic box of 500 h^-1 Mpc on a side. This simulation has been done in the MareNostrum parallel supercomputer at the Barcelona SuperComputer Center. Due to the large simulated volume and good mass resolution, our simulated catalog of dark matter halos comprises more than half a million objects with masses larger than a typical Milky Way galaxy halo. From this dataset we have studied several statistical properties such as the evolution of the halo mass function, the void distribution, the shapes of dark and gas halos and the large scale distribution of baryons.
Sterile neutrinos comprise an entire class of dark matter models that, depending on their production mechanism, can be hot, warm, or cold dark matter. We simulate the Local Group and representative volumes of the Universe in a variety of sterile neut rino models, all of which are consistent with the possible existence of a radiative decay line at ~3.5 keV. We compare models of production via resonances in the presence of a lepton asymmetry (suggested by Shi & Fuller 1999) to thermal models. We find that properties in the highly nonlinear regime - e.g., counts of satellites and internal properties of halos and subhalos - are insensitive to the precise fall-off in power with wavenumber, indicating that nonlinear evolution essentially washes away differences in the initial (linear) matter power spectrum. In the quasi-linear regime at higher redshifts, however, quantitative differences in the 3D matter power spectra remain, raising the possibility that such models can be tested with future observations of the Lyman-alpha forest. While many of the sterile neutrino models largely eliminate multiple small-scale issues within the Cold Dark Matter (CDM) paradigm, we show that these models may be ruled out in the near future via discoveries of additional dwarf satellites in the Local Group.
We study the probability distribution function (PDF) of relative velocity between two different dark matter halos (i.e. pairwise velocity) with a set of high-resolution cosmological $N$-body simulations. We investigate the pairwise velocity PDFs over a wide range of halo masses of $10^{12.5-15}, h^{-1}M_{odot}$ and redshifts of $0<z<1$. At a given set of masses, redshift and the separation length between two halos, our model requires three parameters to set the pairwise velocity PDF, whereas previous non-Gaussian models in the literature assume four or more free parameters. At the length scales of $r=5-40, [h^{-1}, mathrm{Mpc}]$, our model predicts the mean and dispersion of the pairwise velocity for dark matter halos with their masses of $10^{12.5-13.5} , [h^{-1}M_{odot}]$ at $0.3 < z < 1$ with a 5%-level precision, while the model precision reaches a 20% level (mostly a 10% level) for other masses and redshifts explored in the simulations. We demonstrate that our model of the pairwise velocity PDF provides an accurate mapping of the two-point clustering of massive-galaxy-sized halos at the scales of $O(10), h^{-1}mathrm{Mpc}$ between redshift and real space for a given real-space correlation function. For a mass-limited halo sample with their masses greater than $10^{13.5}, h^{-1}M_{odot}$ at $z=0.55$, our model can explain the monopole and quadropole moments of the redshift-space two-point correlations with a precision better than 5% at the scales of $5-40$ and $10-30, h^{-1}mathrm{Mpc}$, respectively. Our model of the pairwise velocity PDF will give a detailed explanation of statistics of massive galaxies at the intermediate scales in redshift surveys, including the non-linear redshift-space distortion effect in two-point correlation functions and the measurements of the kinematic Sunyaev-Zeldovich effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا