ترغب بنشر مسار تعليمي؟ اضغط هنا

The MareNostrum Universe

128   0   0.0 ( 0 )
 نشر من قبل Stefan Gottloeber
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Stefan Gottloeber




اسأل ChatGPT حول البحث

The MareNostrum Universe is one of the biggest SPH cosmological simulations done so far. It contains more than 2 billion particles (2 times 1024^3) in a 500 Mpc/h cubic volume. This simulation has been performed on the MareNostrum supercomputer at the Barcelona Supercomputer Center. We have obtained more than 0.5 million halos with masses greater than a typical Milky Way galaxy halo. We report results about the halo mass function, the shapes of dark matter and gas distributions in halos, the baryonic fraction in galaxy clusters and groups, baryon oscillations in the dark matter and the halo power spectra as well as the distribution and evolution of the gas fraction at large scales.

قيم البحث

اقرأ أيضاً

112 - S. Gottloeber 2006
We report some results from one of the largest hydrodynamical cosmological simulations of large scale structures that has been done up to date. The MareNostrum Universe SPH simulation consists of 2 billion particles (2 times 1024^3) in a cubic box of 500 h^-1 Mpc on a side. This simulation has been done in the MareNostrum parallel supercomputer at the Barcelona SuperComputer Center. Due to the large simulated volume and good mass resolution, our simulated catalog of dark matter halos comprises more than half a million objects with masses larger than a typical Milky Way galaxy halo. From this dataset we have studied several statistical properties such as the evolution of the halo mass function, the void distribution, the shapes of dark and gas halos and the large scale distribution of baryons.
The MareNostrum Universe is one of the largest cosmological SPH simulation done so far. It consists of $1024^3$ dark and $1024^3$ gas particles in a box of 500 $h^{-1}$ Mpc on a side. Here we study the shapes and spins of the dark matter and gas components of the 10,000 most massive objects extracted from the simulation as well as the gas fraction in those objects. We find that the shapes of objects tend to be prolate both in the dark matter and gas. There is a clear dependence of shape on halo mass, the more massive ones being less spherical than the less massive objects. The gas distribution is nevertheless much more spherical than the dark matter, although the triaxiality parameters of gas and dark matter differ only by a few percent and it increases with cluster mass. The spin parameters of gas and dark matter can be well fitted by a lognormal distribution function. On average, the spin of gas is 1.4 larger than the spin of dark matter. We find a similar behavior for the spins at higher redshifts, with a slightly decrease of the spin ratios to 1.16 at $z=1.$ The cosmic normalized baryon fraction in the entire cluster sample ranges from $Y_b = 0.94$, at $z=1$ to $Y_b = 0.92$ at $z=0$. At both redshifts we find a slightly, but statistically significant decrease of $Y_b$ with cluster mass.
The last century has seen enormous progress in our understanding of the Universe. We know the life cycles of stars, the structure of galaxies, the remnants of the big bang, and have a general understanding of how the Universe evolved. We have come re markably far using electromagnetic radiation as our tool for observing the Universe. However, gravity is the engine behind many of the processes in the Universe, and much of its action is dark. Opening a gravitational window on the Universe will let us go further than any alternative. Gravity has its own messenger: Gravitational waves, ripples in the fabric of spacetime. They travel essentially undisturbed and let us peer deep into the formation of the first seed black holes, exploring redshifts as large as z ~ 20, prior to the epoch of cosmic re-ionisation. Exquisite and unprecedented measurements of black hole masses and spins will make it possible to trace the history of black holes across all stages of galaxy evolution, and at the same time constrain any deviation from the Kerr metric of General Relativity. eLISA will be the first ever mission to study the entire Universe with gravitational waves. eLISA is an all-sky monitor and will offer a wide view of a dynamic cosmos using gravitational waves as new and unique messengers to unveil The Gravitational Universe. It provides the closest ever view of the early processes at TeV energies, has guaranteed sources in the form of verification binaries in the Milky Way, and can probe the entire Universe, from its smallest scales around singularities and black holes, all the way to cosmological dimensions.
Theories with several hundred axion fields have enormous numbers of distinct meta-stable minima. A small fraction of these local minima have vacuum energy compatible with current measurements of dark energy. The potential also contains regions suitab le for inflation, and gives rise to a natural type of dark matter. First-order phase transitions from one minimum to the vicinity of another play the role of big bangs and produce many bubbles containing evolving Friedmann-Lemaitre-Robertson-Walker universes. The great majority either collapse in a tiny fraction of a second, or expand exponentially forever as empty, structureless universes. However, restricting to those bubble universes that form non-linear structure at some time in their history we find cosmologies that look remarkably similar to ours. They undergo about 60 efolds of inflation, making them flat, homogeneous and isotropic, and endowing them with a nearly scale-invariant spectrum of primordial density perturbations with roughly the observed magnitude and tilt. They reheat after inflation to a period of radiation domination, followed by matter domination with roughly the observed abundance, followed by vacuum energy domination at roughly the observed density. None of these features require any model building or small parameters. Instead, all dimensionful parameters in the theory can be set equal to the grand unified scale 0.01 M_p, and the dimensionless parameters are order one and can be chosen randomly. The small value of dark energy ultimately comes from non-perturbative gravitational effects, giving an exponentially small vacuum energy density. Therefore, random axion landscapes can account for many of the apparently tuned features of our universe, including its current enormous size, age, and tiny energy densities compared to the scales of fundamental physics.
I give a critical review of the holographic hypothesis, which posits that a universe with gravity can be described by a quantum field theory in fewer dimensions. I first recall how the idea originated from considerations on black hole thermodynamics and the so-called information paradox that arises when Hawking radiation is taken into account. String Quantum Gravity tried to solve the puzzle using the AdS/CFT correspondence, according to which a black hole in a 5-D anti-de Sitter space is like a flat 4-D field of particles and radiation. Although such an interesting holographic property, also called gauge/gravity duality, has never been proved rigorously, it has impulsed a number of research programs in fields as diverse as nuclear physics, condensed matter physics, general relativity and cosmology. I finally discuss the pros and cons of the holographic conjecture, and emphasizes the key role played by black holes for understanding quantum gravity and possible dualities between distant fields of theoretical physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا