ترغب بنشر مسار تعليمي؟ اضغط هنا

A complete 12CO 2-1 map of M51 with HERA

40   0   0.0 ( 0 )
 نشر من قبل Carsten Kramer
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nearby, almost face-on, and interacting galaxy M51 offers an excellent opportunity to study the distribution of molecular gas and the mechanisms governing the star formation rate. We have created a complete map of M51 in 12CO 2-1 at a resolution of 11 arcsec corresponding to 450 kpc using HERA at the IRAM-30m telescope. In Schuster et al. (2006) we have combined these data with maps of HI and the radio-continuum to study the star formation efficiency, the local Schmidt law, and Toomre stability of the disk in radial averages out to radii of 12 kpc. Here, we also discuss the distribution of giant molecular associations and its mass spectrum, in comparison with similar studies in the literature.



قيم البحث

اقرأ أيضاً

70 - M. Hitschfeld 2009
To date the onset of large-scale star formation in galaxies and its link to gravitational stability of the galactic disk have not been fully understood. The nearby face-on spiral galaxy M51 is an ideal target for studying this subject. This paper com bines CO, dust, HI, and stellar maps of M51 and its companion galaxy to study the H2/HI transition, the gas-to-dust ratios, and the stability of the disk against gravitational collapse. We combine maps of the molecular gas using 12CO 2--1 map HERA/IRAM-30m data and HI VLA data to study the total gas surface density and the phase transition of atomic to molecular gas. The total gas surface density is compared to the dust surface density from 850 micron SCUBA data. Taking into account the velocity dispersions of the molecular and atomic gas, and the stellar surface densities derived from the 2MASS K-band survey, we derive the total Toomre Q parameter of the disk. The gas surface density in the spiral arms is approximately 2-3 higher compared to that of the interarm regions. The ratio of molecular to atomic surface density shows a nearly power-law dependence on the hydrostatic pressure P_hydro. The gas surface density distribution in M51 shows an underlying exponential distribution with a scale length of h_gas=7.6 kpc representing 55% of the total gas mass, comparable to the properties of the exponential dust disk. In contrast to the velocity widths observed in HI, the CO velocity dispersion shows enhanced line widths in the spiral arms compared to the interarm regions. The contribution of the stellar component in the Toomre Q-parameter analysis is significant and lowers the combined Q-parameter Q_tot by up to 70% towards the threshold for gravitational instability. The value of Q_tot varies from 1.5-3 in radial averages. A map of Q_tot shows values around 1 on the spiral arms.
The mechanisms governing the star formation rate in spiral galaxies are not yet clear. The nearby, almost face-on, and interacting galaxy M51 offers an excellent opportunity to study at high spatial resolutions the local star formation laws. In this first paper, we investigate the correlation of H2, HI, and total gas surface densities with the star forming activity, derived from the radio continuum (RC), along radial averages out to radii of 12kpc. We have created a complete map of M51 in 12CO 2-1 at a resolution of 450kpc using HERA at the IRAM-30m telescope. These data are combined with maps of HI and the radio-continuum at 20cm wavelength. The latter is used to estimate the star formation rate (SFR), thus allowing to study the star formation efficiency and the local Schmidt law. The velocity dispersion from CO is used to study the critical surface density and the gravitational stability of the disk. The critical gas velocity dispersions needed to stabilize the gas against gravitational collapse in the differentially rotating disk of M51 using the Toomre criterion, vary with radius between 1.7 and 6.8 km/s. Observed radially averaged dispersions derived from the CO data vary between 28 km/s in the center and 8 km/s at radii of 7 to 9 kpc. They exceed the critical dispersions by factors Q_gas of 1 to 5. We speculate that the gravitational potential of stars leads to a critically stable disk.
We present the first complete CO J=3-2 map of the nearby grand-design spiral galaxy M51 (NGC 5194), at a spatial resolution of ~600 pc, obtained with the HARP-B instrument on the James Clerk Maxwell Telescope. The map covers the entire optical galaxy disk and out to the companion NGC 5195, with CO J=3-2 emission detected over an area of ~9x6 (~21x14 kpc). We describe the CO J=3-2 integrated intensity map and combine our results with maps of CO J=2-1, CO J=1-0 and other data from the literature to investigate the variation of the molecular gas, atomic gas and polycyclic aromatic hydrocarbon (PAH) properties of M51 as a function of distance along the spiral structure on sub-kpc scales. We find that for the CO J=3-2 and CO J=2-1 transitions there is a clear difference between the variation of arm and inter-arm emission with galactocentric radius, with the inter-arm emission relatively constant with radius and the contrast between arm and inter-arm emission decreasing with radius. For CO J=1-0 and HI the variation with radius shows a similar trend for the arm and inter-arm regions, and the arm-inter-arm contrast appears relatively constant with radius. We investigate the variation of CO line ratios (J=3-2/2-1, J=2-1/1-0 and J=3-2/1-0) as a function of distance along the spiral structure. Line ratios are consistent with the range of typical values for other nearby galaxies in the literature. The highest CO J=3-2/2-1 line ratios are found in the central ~1 kpc and in the spiral arms and the lowest line ratios in the inter-arm regions.We find no clear evidence of a trend with radius for the spiral arms but for the inter-arm regions there appears to be a trend for all CO line ratios to increase with radius. We find a strong relationship between the ratio of CO J=3-2 intensity to stellar continuum-subtracted 8mu PAH surface brightness and the CO J=3-2 intensity that appears to vary with radius.
We have mapped the central region of the Seyfert 1 galaxy NGC 1097 in 12CO(J=2-1) with the Submillieter Array (SMA). The 12CO(J=2-1) map shows a central concentration and a surrounding ring, which coincide respectively with the Seyfert nucleus and a starburst ring. The line intensity peaks at the nucleus, whereas in a previously published 12CO(J=1-0) map the intensity peaks at the starburst ring. The molecular ring has an azimuthally averaged 12CO(J=2-1)/(J=1-0) intensity ratio (R21) of about unity, which is similar to those in nearby active star forming galaxies, suggesting that most of the molecular mass in the ring is involved in fueling the starburst. The molecular gas can last for only about 1.2times10^8 years without further replenishment assuming a constant star formation rate and a perfect conversion of gas to stars. The velocity map shows that the central molecular gas is rotating with the molecular ring in the same direction, while its velocity gradient is much steeper than that of the ring. This velocity gradient of the central gas is similar to what is usually observed in some Seyfert 2 galaxies. To view the active nucleus directly in the optical, the central molecular gas structure can either be a low-inclined disk or torus but not too low to be less massive than the mass of the host galaxy itself, be a highly-inclined thin disk or clumpy and thick torus, or be an inner part of the galactic disk. The R21 value of ~1.9 of the central molecular gas component, which is significantly higher than the value found at the molecular gas ring, indicates that the activity of the Seyfert nucleus may have a significant influence on the conditions of the molecular gas in the central component.
M16, the Eagle Nebula, is an outstanding HII region where extensive high-mass star formation is taking place in the Sagittarius Arm, and hosts the remarkable pillars observed with HST. We made new CO observations of the region in the 12CO J=1--0 and J=2--1 transitions with NANTEN2. These observations revealed for the first time that a giant molecular cloud of $sim 1.3 times 10^5$ Msun is associated with M16, which is elongated vertically to the Galactic plane over 35 pc at a distance of 1.8 kpc. We found a cavity of the molecular gas of $sim 10$ pc diameter toward the heart of M16 at lbeq (16.95degree, 0.85degree), where more than 10 O-type stars and $sim 400$ stars are associated, in addition to a close-by molecular cavity toward a Spitzer bubble N19 at lbeq (17.06degree, 1.0degree). We found three velocity components which show spatially complementary distribution in the entire M16 giant molecular cloud (GMC) including NGC6611 and N19, suggesting collisional interaction between them. Based on the above results we frame a hypothesis that collision between the red-shifted and blue-shifted components at a relative of $sim 10$ kms triggered formation of the O-type stars in the M16 GMC in the last 1-2 Myr. The collision is two fold in the sense that one of the collisional interactions is major toward the M16 cluster and the other toward N19 with a RCW120 type, the former triggered most of the O star formation with almost full ionization of the parent gas, and the latter an O star formation in N19.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا