ترغب بنشر مسار تعليمي؟ اضغط هنا

A CO J=3-2 map of M51 with HARP-B: Radial properties of the spiral structure

55   0   0.0 ( 0 )
 نشر من قبل Catherine Vlahakis
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first complete CO J=3-2 map of the nearby grand-design spiral galaxy M51 (NGC 5194), at a spatial resolution of ~600 pc, obtained with the HARP-B instrument on the James Clerk Maxwell Telescope. The map covers the entire optical galaxy disk and out to the companion NGC 5195, with CO J=3-2 emission detected over an area of ~9x6 (~21x14 kpc). We describe the CO J=3-2 integrated intensity map and combine our results with maps of CO J=2-1, CO J=1-0 and other data from the literature to investigate the variation of the molecular gas, atomic gas and polycyclic aromatic hydrocarbon (PAH) properties of M51 as a function of distance along the spiral structure on sub-kpc scales. We find that for the CO J=3-2 and CO J=2-1 transitions there is a clear difference between the variation of arm and inter-arm emission with galactocentric radius, with the inter-arm emission relatively constant with radius and the contrast between arm and inter-arm emission decreasing with radius. For CO J=1-0 and HI the variation with radius shows a similar trend for the arm and inter-arm regions, and the arm-inter-arm contrast appears relatively constant with radius. We investigate the variation of CO line ratios (J=3-2/2-1, J=2-1/1-0 and J=3-2/1-0) as a function of distance along the spiral structure. Line ratios are consistent with the range of typical values for other nearby galaxies in the literature. The highest CO J=3-2/2-1 line ratios are found in the central ~1 kpc and in the spiral arms and the lowest line ratios in the inter-arm regions.We find no clear evidence of a trend with radius for the spiral arms but for the inter-arm regions there appears to be a trend for all CO line ratios to increase with radius. We find a strong relationship between the ratio of CO J=3-2 intensity to stellar continuum-subtracted 8mu PAH surface brightness and the CO J=3-2 intensity that appears to vary with radius.

قيم البحث

اقرأ أيضاً

123 - S. Matsushita 2004
We present the first interferometric CO(J=3-2) observations (beam size of 3.9x1.6 or 160pc x 65pc) with the Submillimeter Array (SMA) toward the center of the Seyfert 2 galaxy M51. The image shows a strong concentration at the nucleus and weak emissi on from the spiral arm to the northwest. The integrated intensity of the central component in CO(J=3-2) is almost twice as high as that in CO(J=1-0), indicating that the molecular gas within an ~80 pc radius of the nucleus is warm (>~100 K) and dense (~10^4 cm^-3). Similar intensity ratios are seen in shocked regions in our Galaxy, suggesting that these gas properties may be related to AGN or starburst activity. The central component shows a linear velocity gradient (~1.4 km/s/pc) perpendicular to the radio continuum jet, similar to that seen in previous observations and interpreted as a circumnuclear molecular disk/torus around the Seyfert 2 nucleus. In addition, we identify a linear velocity gradient (~0.7 km/s/pc) along the jet. Judging from the energetics, the velocity gradient can be explained by supernova explosions or energy and momentum transfer from the jet to the molecular gas via interaction, which is consistent with the high intensity ratio.
The mechanisms governing the star formation rate in spiral galaxies are not yet clear. The nearby, almost face-on, and interacting galaxy M51 offers an excellent opportunity to study at high spatial resolutions the local star formation laws. In this first paper, we investigate the correlation of H2, HI, and total gas surface densities with the star forming activity, derived from the radio continuum (RC), along radial averages out to radii of 12kpc. We have created a complete map of M51 in 12CO 2-1 at a resolution of 450kpc using HERA at the IRAM-30m telescope. These data are combined with maps of HI and the radio-continuum at 20cm wavelength. The latter is used to estimate the star formation rate (SFR), thus allowing to study the star formation efficiency and the local Schmidt law. The velocity dispersion from CO is used to study the critical surface density and the gravitational stability of the disk. The critical gas velocity dispersions needed to stabilize the gas against gravitational collapse in the differentially rotating disk of M51 using the Toomre criterion, vary with radius between 1.7 and 6.8 km/s. Observed radially averaged dispersions derived from the CO data vary between 28 km/s in the center and 8 km/s at radii of 7 to 9 kpc. They exceed the critical dispersions by factors Q_gas of 1 to 5. We speculate that the gravitational potential of stars leads to a critically stable disk.
We present the results of CO(J=3-2) on-the-fly mappings of two nearby non-barred spiral galaxies NGC 628 and NGC 7793 with the Atacama Submillimeter Telescope Experiment at an effective angular resolution of 25. We successfully obtained global distri butions of CO(J=3-2) emission over the entire disks at a sub-kpc resolution for both galaxies. We examined the spatially-resolved (sub-kpc) relationship between CO(J=3-2) luminosities (LCO(3-2)) and infrared (IR) luminosities (LIR) for NGC 628, NGC 7793, and M 83, and compared it with global luminosities of JCMT Nearby Galaxy Legacy Survey sample. We found a striking linear LCO(3-2)-LIR correlation over the 4 orders of magnitude, and the correlation is consistent even with that for ultraluminous infrared galaxies and submillimeter selected galaxies. In addition, we examined the spatially-resolved relationship between CO(J=3-2) intensities (ICO(3-2)) and extinction-corrected star formation rates (SFRs) for NGC 628, NGC 7793, and M 83, and compared it with that for GMCs in M 33 and 14 nearby galaxy centers. We found a linear ICO(3-2)-SFR correlation with 1 dex scatter. We conclude that the CO(J=3-2) star formation law (i.e., linear LCO(3-2)-LIR and ICO(3-2)-SFR correlations) is universally applicable to various types and spatial scales of galaxies, from spatially-resolved nearby galaxy disks to distant IR-luminous galaxies, within 1 dex scatter.
The nearby, almost face-on, and interacting galaxy M51 offers an excellent opportunity to study the distribution of molecular gas and the mechanisms governing the star formation rate. We have created a complete map of M51 in 12CO 2-1 at a resolution of 11 arcsec corresponding to 450 kpc using HERA at the IRAM-30m telescope. In Schuster et al. (2006) we have combined these data with maps of HI and the radio-continuum to study the star formation efficiency, the local Schmidt law, and Toomre stability of the disk in radial averages out to radii of 12 kpc. Here, we also discuss the distribution of giant molecular associations and its mass spectrum, in comparison with similar studies in the literature.
113 - Fumi Egusa 2013
Using mid-infrared (MIR) images of four photometric bands of the Infrared Camera (IRC) onboard the AKARI satellite, S7 (7 um), S11 (11 um), L15 (15 um), and L24 (24 um), we investigate the interstellar dust properties of the nearby pair of galaxies M 51 with respect to its spiral arm structure. The arm and interarm regions being defined based on a spatially filtered stellar component model image, we measure the arm-to-interarm contrast for each band. The contrast is lowest in the S11 image, which is interpreted as that among the four AKARI MIR bands the S11 image best correlates with the spatial distribution of dust grains including colder components, while the L24 image with the highest contrast traces warmer dust heated by star forming activities. The surface brightness ratio between the bands, i.e. color, is measured over the disk of the main galaxy, M51a, at 300 pc resolution. We find that the distribution of S7/S11 is smooth and well traces the global spiral arm pattern while L15/S11 and L24/S11 peak at individual HII regions. This result indicates that the ionization state of PAHs is related to the spiral structure. Comparison with observational data and dust models also supports the importance of the variation in the PAH ionization state within the M51a disk. However, the mechanism driving this variation is not yet clear from currently available data sets. Another suggestion from the comparison with the models is that the PAH fraction to the total dust mass is higher than previously estimated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا