ترغب بنشر مسار تعليمي؟ اضغط هنا

Interferometric 12CO(J=2-1) image of the Nuclear Region of Seyfert 1 Galaxy NGC 1097

112   0   0.0 ( 0 )
 نشر من قبل Pei-Ying Hsieh
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have mapped the central region of the Seyfert 1 galaxy NGC 1097 in 12CO(J=2-1) with the Submillieter Array (SMA). The 12CO(J=2-1) map shows a central concentration and a surrounding ring, which coincide respectively with the Seyfert nucleus and a starburst ring. The line intensity peaks at the nucleus, whereas in a previously published 12CO(J=1-0) map the intensity peaks at the starburst ring. The molecular ring has an azimuthally averaged 12CO(J=2-1)/(J=1-0) intensity ratio (R21) of about unity, which is similar to those in nearby active star forming galaxies, suggesting that most of the molecular mass in the ring is involved in fueling the starburst. The molecular gas can last for only about 1.2times10^8 years without further replenishment assuming a constant star formation rate and a perfect conversion of gas to stars. The velocity map shows that the central molecular gas is rotating with the molecular ring in the same direction, while its velocity gradient is much steeper than that of the ring. This velocity gradient of the central gas is similar to what is usually observed in some Seyfert 2 galaxies. To view the active nucleus directly in the optical, the central molecular gas structure can either be a low-inclined disk or torus but not too low to be less massive than the mass of the host galaxy itself, be a highly-inclined thin disk or clumpy and thick torus, or be an inner part of the galactic disk. The R21 value of ~1.9 of the central molecular gas component, which is significantly higher than the value found at the molecular gas ring, indicates that the activity of the Seyfert nucleus may have a significant influence on the conditions of the molecular gas in the central component.



قيم البحث

اقرأ أيضاً

99 - S.Martin , K. Kohno , T. Izumi 2014
The nearby Sy 1 galaxy NGC 1097 represents an ideal laboratory to explore the molecular chemistry in the presence and surroundings of an active galactic nucleus. Exploring the distribution of different molecular species allows us to understand the ph ysical processes affecting the ISM both in the AGN vicinity as well as in the outer star forming molecular ring. We carried out 3 mm ALMA observations of HCN, HCO+, CCH, CS, HNCO, SiO, HC3N, and SO as well as the 13C isotopologues. All species were imaged over the central 2 kpc (~30) of the galaxy at a resolution of ~2.2x1.5 (150 pc x 100 pc). HCO+ and CS appear to be slightly enhanced in the star forming ring. CCH, showing the largest variations across NGC 1097, is suggested to be a good tracer of both obscured and early stage star formation. HNCO, SiO and HC3N are significantly enhanced in the inner circumnuclear disk surrounding the AGN. Differences in the molecular abundances are observed between the star forming ring and the inner circumnuclear disk. We conclude that the HCN/HCO+ and HCN/CS differences observed between AGN dominated and starburst galaxies are not due to a HCN enhancement due to X-rays, but rather this enhancement is produced by shocked material at distances of 200 pc from the AGN. Additionally we claim the lower HCN/CS to be a combination of a small under-abundance of CS in AGNs together with excitation effects, where a high dense gas component (~10^6 cm^-3) may be more prominent in SB galaxies. However the most promising are the differences found among the dense gas tracers which, at our modest spatial resolution, seem to outline the physical structure of the molecular disk around the AGN. In this picture, HNCO probes the well shielded gas in the disk, surrounding the dense material moderately exposed to X-ray radiation traced by HC3N. Finally SiO might be the innermost molecule in the disk structure.
81 - D. Reynaud IRAM 1999
We present 13CO(1-0) and 12CO(2-1) aperture synthesis maps of the barred spiral galaxy NGC1530. The angular resolutions are respectively 3.1 and 1.6. Both transitions show features similar to the 12CO(1-0) map, with a nuclear feature (a ring or unres olved spiral arms) surrounded by two curved arcs. The average line ratios are 12CO(1-0)/13CO(1-0)=9.3 and 12CO(2-1)/12CO(1-0)=0.7. The 12CO/13CO ratio is lower in the circumnuclear ring (6-8) than in the arcs (11-15). We fit the observed line ratios by escape probability models, and deduce that the gas density is probably higher in the nuclear feature (>= 5 10^2 cm^{-3}) than in the arcs (~2 10^2 cm^{-3}), confirming earlier HCN results. The kinetic temperatures are in the range 20-90K, but are weakly constrained by the model. The average filling factor of the 12CO(1-0) emitting gas is low, ~0.15. The cm-radio continuum emission also peaks in the nuclear feature, indicating a higher rate of star formation than in the arcs. We derive values for the CO luminosity to molecular gas mass conversion factor between 0.3 and 2.3 Msolar (K km/s pc^2)^{-1}, significantly lower than the standard Galactic value.
63 - G.Malaguti , L.Bassani , M.Cappi 1999
The Seyfert 2 galaxy NGC 2110 has been observed with BeppoSAX between 0.5 and 150 keV. The high energy instrument onboard, PDS, has succeeded in measuring for the first time the spectrum of this source in the 13-150 keV range. The PDS spectrum, havin g a photon index Gamma~1.86 is fully compatible with that expected from a Seyfert 1 nucleus. In the framework of unified models, the harder (Gamma~1.67) 2-10 keV spectrum is well explained assuming the presence of a complex partial + total absorber (Nh~30x10^22 cm^-2 x25% + Nh~4x10^22 cm^-2 x100%). The high column density of this complex absorber is consistent both with the FeK_alpha line strength and with the detection of an absorption edge at E~7.1 keV in the power-law spectrum.
We report the transition towards a type 1 Seyfert experienced by the classical type 2 Seyfert nucleus in NGC 7582. The transition, found at most 20 days from its maximum peak, presents a unique opportunity to study these rare events in detail. At max imum the Ha line width is of about 12000 km/s. We examine three scenarios that could potentially explain the transition: capture of a star by a supermassive black hole, a reddening change in the surrounding torus, and the radiative onset of a type IIn supernova exploding in a compact nuclear/circumnuclear starburst.
A large reverberation mapping study of the Seyfert 1 galaxy NGC 7469 has yielded emission-line lags for Hbeta 4861 and He II 4686 and a central black hole mass measurement of about 10 million solar masses, consistent with previous measurements. A ver y low level of variability during the monitoring campaign precluded meeting our original goal of recovering velocity-delay maps from the data, but with the new Hbeta measurement, NGC 7469 is no longer an outlier in the relationship between the size of the Hbeta-emitting broad-line region and the AGN luminosity. It was necessary to detrend the continuum and Hbeta and He II 4686 line light curves and those from archival UV data for different time-series analysis methods to yield consistent results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا