ﻻ يوجد ملخص باللغة العربية
The newly operational X-ray satellite Suzaku observed the southwestern quadrant of the supernova remnant (SNR) RCW 86 in February 2006 to study the nature of the 6.4 keV emission line first detected with the Advanced Satellite for Cosmology and Astronomy (ASCA). The new data confirm the existence of the line, localizing it for the first time; most of the line emission is adjacent and interior to the forward shock and not at the locus of the continuum hard emission. We also report the first detection of a 7.1 keV line that we interpret as the K-beta emission from low-ionization iron. The Fe-K line features are consistent with a non-equilibrium plasma of Fe-rich ejecta with n_{e}t <~ 10^9 cm^-3 s and kT_{e} ~ 5 keV. This combination of low n_{e}t and high kT_{e} suggests collisionless electron heating in an SNR shock. The Fe K-alpha line shows evidence for intrinsic broadening, with a width of 47 (34--59) eV (99% error region). The difference of the spatial distributions of the hard continuum above 3 keV and the Fe-K line emission support a synchrotron origin for the hard continuum.
Diffusive shock acceleration by the shockwaves in supernova remnants (SNRs) is widely accepted as the dominant source for Galactic cosmic rays. However, it is unknown what determines the maximum energy of accelerated particles. The surrounding enviro
Context. Observation of Balmer lines from the region around the forward shock of supernova remnants (SNR) may provide valuable information on the shock dynamics and the efficiency of particle acceleration at the shock. Aims. We calculated the Balme
We study the kinematically narrow, low-ionization line emission from a bright, starburst galaxy at z = 0.69 using slit spectroscopy obtained with Keck/LRIS. The spectrum reveals strong absorption in MgII and FeII resonance transitions with Doppler sh
We report here X-ray imaging spectroscopy observations of the northeastern shell of the supernova remnant RCW 86 with Chandra and XMM-Newton. Along this part of the shell the dominant X-ray radiation mechanism changes from thermal to synchrotron emis
We present an analysis of the X-ray emission of the supernova remnant MSH14-63, which was partially covered by four observations with XMM-Newton. The detection of Fe K emission at 6.4 keV, and the lack of spatial correlation between hard X-ray and ra