ترغب بنشر مسار تعليمي؟ اضغط هنا

The X-ray synchrotron emission of RCW 86 and the implications for its age

119   0   0.0 ( 0 )
 نشر من قبل Jacco Vink
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report here X-ray imaging spectroscopy observations of the northeastern shell of the supernova remnant RCW 86 with Chandra and XMM-Newton. Along this part of the shell the dominant X-ray radiation mechanism changes from thermal to synchrotron emission. We argue that both the presence of X-ray synchrotron radiation and the width of the synchrotron emitting region suggest a locally higher shock velocity of V_s = 2700 km/s and a magnetic field of B = 24+/-5 microGauss. Moreover, we also show that a simple power law cosmic ray electron spectrum with an exponential cut-off cannot explain the broad band synchrotron emission. Instead a concave electron spectrum is needed, as predicted by non-linear shock acceleration models. Finally, we show that the derived shock velocity strengthens the case that RCW 86 is the remnant of SN 185.



قيم البحث

اقرأ أيضاً

Context. Observation of Balmer lines from the region around the forward shock of supernova remnants (SNR) may provide valuable information on the shock dynamics and the efficiency of particle acceleration at the shock. Aims. We calculated the Balme r line emission and the shape of the broad Balmer line for parameter values suitable for SNR RCW 86 (G315.4-2.3) as a function of the cosmic-ray (CR) acceleration efficiency and of the level of thermal equilibration between electrons and protons behind the shock. This calculation aims at using the width of the broad Balmer-line emission to infer the CR acceleration efficiency in this remnant. Methods. We used the recently developed nonlinear theory of diffusive shock-acceleration in the presence of neutrals. The semianalytical approach we developed includes a description of magnetic field amplification as due to resonant streaming instability, the dynamical reaction of accelerated particles and the turbulent magnetic field on the shock, and all channels of interaction between neutral hydrogen atoms and background ions that are relevant for the shock dynamics. Results. We derive the CR acceleration efficiency in the SNR RCW 86 from the Balmer emission. Since our calculation used recent measurements of the shock proper motion, the results depend on the assumed distance to Earth. For a distance of 2 kpc the measured width of the broad Balmer line is compatible with the absence of CR acceleration. For a distance of 2.5 kpc, which is a widely used value in current literature, a CR acceleration efficiency of 5-30% is obtained, depending upon the electron-ion equilibration and the ionization fraction upstream of the shock. By combining information on Balmer emission with the measured value of the downstream electron temperature, we constrain the CR acceleration efficiency to be ~20%.
372 - Jacco Vink 2002
We present an analysis of the X-ray emission of the supernova remnant MSH14-63, which was partially covered by four observations with XMM-Newton. The detection of Fe K emission at 6.4 keV, and the lack of spatial correlation between hard X-ray and ra dio emission is evidence against a dominant X-ray synchrotron component. We argue that the hard X-ray continuum is best explained by non-thermal bremsstrahlung from a supra-thermal tail to an otherwise cool electron gas. The existence of low electron temperatures, required to explain the absence of line emission, is supported by low temperatures found in other parts of the remnant, which are as low as 0.2 keV in some regions.
73 - Masaru Ueno 2006
The newly operational X-ray satellite Suzaku observed the southwestern quadrant of the supernova remnant (SNR) RCW 86 in February 2006 to study the nature of the 6.4 keV emission line first detected with the Advanced Satellite for Cosmology and Astro nomy (ASCA). The new data confirm the existence of the line, localizing it for the first time; most of the line emission is adjacent and interior to the forward shock and not at the locus of the continuum hard emission. We also report the first detection of a 7.1 keV line that we interpret as the K-beta emission from low-ionization iron. The Fe-K line features are consistent with a non-equilibrium plasma of Fe-rich ejecta with n_{e}t <~ 10^9 cm^-3 s and kT_{e} ~ 5 keV. This combination of low n_{e}t and high kT_{e} suggests collisionless electron heating in an SNR shock. The Fe K-alpha line shows evidence for intrinsic broadening, with a width of 47 (34--59) eV (99% error region). The difference of the spatial distributions of the hard continuum above 3 keV and the Fe-K line emission support a synchrotron origin for the hard continuum.
We report new Chandra observations of one of the few Galactic supernova remnants whose X-ray spectrum is dominated by nonthermal synchrotron radiation, G330.2+1.0. We find that between 2006 and 2017, some parts of the shell have expanded by about 1%, giving a free-expansion (undecelerated) age of about 1000 yr, and implying shock velocities there of 9000 km/s for a distance of 5 kpc. Somewhat slower expansion is seen elsewhere around the remnant periphery, in particular in compact knots. Because some deceleration must have taken place, we infer that G330.2+1.0 is less than about 1000 yr old. Thus, G330.2+1.0 is one of only four Galactic core-collapse remnants of the last millennium. The large size, low brightness, and young age require a very low ambient density, suggesting expansion in a stellar-wind bubble. We suggest that in the east, where some thermal emission is seen and expansion velocities are much slower, the shock has reached the edge of the cavity. The high shock velocities can easily accelerate relativistic electrons to X-ray-emitting energies. A few small regions show highly significant brightness changes by 10% to 20%, both brightening and fading, a phenomenon previously observed in only two supernova remnants, indicating strong and/or turbulent magnetic fields.
We have analyzed the atomic and molecular gas using the 21 cm HI and 2.6/1.3 mm CO emissions toward the young supernova remnant (SNR) RCW 86 in order to identify the interstellar medium with which the shock waves of the SNR interact. We have found an HI intensity depression in the velocity range between $-46$ and $-28$ km s$^{-1}$ toward the SNR, suggesting a cavity in the interstellar medium. The HI cavity coincides with the thermal and non-thermal emitting X-ray shell. The thermal X-rays are coincident with the edge of the HI distribution, which indicates a strong density gradient, while the non-thermal X-rays are found toward the less dense, inner part of the HI cavity. The most significant non-thermal X-rays are seen toward the southwestern part of the shell where the HI gas traces the dense and cold component. We also identified CO clouds which are likely interacting with the SNR shock waves in the same velocity range as the HI, although the CO clouds are distributed only in a limited part of the SNR shell. The most massive cloud is located in the southeastern part of the shell, showing detailed correspondence with the thermal X-rays. These CO clouds show an enhanced CO $J$ = 2-1/1-0 intensity ratio, suggesting heating/compression by the shock front. We interpret that the shock-cloud interaction enhances non-thermal X-rays in the southwest and the thermal X-rays are emitted by the shock-heated gas of density 10-100 cm$^{-3}$. Moreover, we can clearly see an HI envelope around the CO cloud, suggesting that the progenitor had a weaker wind than the massive progenitor of the core-collapse SNR RX J1713.7$-$3949. It seems likely that the progenitor of RCW 86 was a system consisting of a white dwarf and a low-mass star with low-velocity accretion winds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا