ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmic Ray acceleration and Balmer emission from RCW 86 (G315.4-2.3)

125   0   0.0 ( 0 )
 نشر من قبل Giovanni Morlino Dr.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. Observation of Balmer lines from the region around the forward shock of supernova remnants (SNR) may provide valuable information on the shock dynamics and the efficiency of particle acceleration at the shock. Aims. We calculated the Balmer line emission and the shape of the broad Balmer line for parameter values suitable for SNR RCW 86 (G315.4-2.3) as a function of the cosmic-ray (CR) acceleration efficiency and of the level of thermal equilibration between electrons and protons behind the shock. This calculation aims at using the width of the broad Balmer-line emission to infer the CR acceleration efficiency in this remnant. Methods. We used the recently developed nonlinear theory of diffusive shock-acceleration in the presence of neutrals. The semianalytical approach we developed includes a description of magnetic field amplification as due to resonant streaming instability, the dynamical reaction of accelerated particles and the turbulent magnetic field on the shock, and all channels of interaction between neutral hydrogen atoms and background ions that are relevant for the shock dynamics. Results. We derive the CR acceleration efficiency in the SNR RCW 86 from the Balmer emission. Since our calculation used recent measurements of the shock proper motion, the results depend on the assumed distance to Earth. For a distance of 2 kpc the measured width of the broad Balmer line is compatible with the absence of CR acceleration. For a distance of 2.5 kpc, which is a widely used value in current literature, a CR acceleration efficiency of 5-30% is obtained, depending upon the electron-ion equilibration and the ionization fraction upstream of the shock. By combining information on Balmer emission with the measured value of the downstream electron temperature, we constrain the CR acceleration efficiency to be ~20%.



قيم البحث

اقرأ أيضاً

Context: Observation of Balmer lines from the region around the forward shock of supernova remnants may provide precious information on the shock dynamics and on the efficiency of particle acceleration at the shock. Aims: We calculate the Balmer li ne emission and the shape of the broad Balmer line for parameter values suitable for SNR 0509-67.5, as a function of the cosmic ray acceleration efficiency and of the level of thermal equilibration between electrons and protons behind the shock. This calculation aims at using the width of the broad Balmer line emission to infer the cosmic ray acceleration efficiency in this remnant. Methods: We use the recently developed non-linear theory of diffusive shock acceleration in the presence of neutrals. The semi-analytical approach that we developed includes a description of magnetic field amplification as due to resonant streaming instability, the dynamical reaction of both accelerated particles and turbulent magnetic field on the shock, and all channels of interaction between neutral atoms and background plasma that change the shock dynamics. Results: We achieve a quantitative assessment of the CR acceleration efficiency in SNR 0509-67.5 as a function of the shock velocity and different levels of electron-proton thermalization in the shock region. If the shock moves faster than ~4500 km/s, one can conclude that particle acceleration must be taking place with efficiency of several tens of percent. For lower shock velocity the evidence for particle acceleration becomes less clear because of the uncertainty in the electron-ion equilibration downstream. We also discuss the role of future measurements of the narrow Balmer line.
Balmer emission may be a powerful diagnostic tool to test the paradigm of cosmic ray (CR) acceleration in young supernova remnant (SNR) shocks. The width of the broad Balmer line is a direct indicator of the downstream plasma temperature. In case of efficient particle acceleration an appreciable fraction of the total kinetic energy of the plasma is channeled into CRs, therefore the downstream temperature decreases and so does the broad Balmer line width. This width also depends on the level of thermal equilibration between ions and neutral hydrogen atoms in the downstream. Since in general in young SNR shocks only a few charge exchange (CE) reactions occur before ionization, equilibration between ions and neutrals is not reached, and a kinetic description of the neutrals is required in order to properly compute Balmer emission. We provide a method for the calculation of Balmer emission using a self-consistent description of the shock structure in the presence of neutrals and CRs. We use a recently developed semi-analytical approach, where neutral particles, ionized plasma, accelerated particles and magnetic fields are all coupled together through the mass, momentum and energy flux conservation equations. The distribution of neutrals is obtained from the full Boltzmann equation in velocity space, coupled to Maxwellian ions through ionization and CE processes. The computation is also improved with respect to previous work thanks to a better approximation for the atomic interaction rates. We find that for shock speeds >2500km/s the distribution of broad neutrals never approaches a Maxwellian and its moments differ from those of the ionized component. These differences reflect into a smaller FWHM than predicted in previous calculations, where thermalization was assumed. The method presented here provides a realistic estimate of particle acceleration efficiency in Balmer dominated shocks.
Several young supernova remnants (SNRs) have recently been detected in the high-energy and very-high-energy gamma-ray domains. As exemplified by RX J1713.7-3946, the nature of this emission has been hotly debated, and direct evidence for the efficien t acceleration of cosmic-ray protons at the SNR shocks still remains elusive. We analyzed more than 40 months of data acquired by the Large Area Telescope (LAT) on-board the Fermi Gamma-Ray Space Telescope in the HE domain, and gathered all of the relevant multi-wavelength (from radio to VHE gamma-rays) information about the broadband nonthermal emission from RCW 86. For this purpose, we re-analyzed the archival X-ray data from the ASCA/Gas Imaging Spectrometer (GIS), the XMM-Newton/EPIC-MOS, and the RXTE/Proportional Counter Array (PCA). Beyond the expected Galactic diffuse background, no significant gamma-ray emission in the direction of RCW 86 is detected in any of the 0.1-1, 1-10 and 10-100 GeV Fermi-LAT maps. In the hadronic scenario, the derived HE upper limits together with the HESS measurements in the VHE domain can only be accommodated by a spectral index Gamma <= 1.8, i.e. a value in-between the standard (test-particle) index and the asymptotic limit of theoretical particle spectra in the case of strongly modified shocks. The interpretation of the gamma-ray emission by inverse Compton scattering of high energy electrons reproduces the multi-wavelength data using a reasonable value for the average magnetic field of 15-25 muG. For these two scenarios, we assessed the level of acceleration efficiency. We discuss these results in the light of existing estimates of the magnetic field strength, the effective density and the acceleration efficiency in RCW 86.
442 - R. P. Mignani 2012
G315.4-2.3 is a young Galactic supernova remnant (SNR), whose identification as the remains of a Type-II supernova (SN) explosion has been debated for a long time. In particular, recent multi-wavelength observations suggest that it is the result of a Type Ia SN, based on spectroscopy of the SNR shell and the lack of a compact stellar remnant.However, two X-ray sources, one detected by Einstein and ROSAT (Source V) and the other by Chandra (Source N) have been proposed as possible isolated neutron star candidates. In both cases, no clear optical identification was available and, therefore, we performed an optical and X-ray study to determine the nature of these two sources. Based on Chandra astrometry, Source V is associated with a bright V~14 star, which had been suggested based on the less accurate ROSAT position. Similarly, from VLT archival observations, we found that Source N is associated with a relatively bright star ($V=20.14 $). These likely identifications suggest that both X-ray sources cannot be isolated neutron stars.
The shocks of supernova remnants (SNRs) are believed to accelerate particles to cosmic ray (CR) energies. The amplification of the magnetic field due to CRs propagating in the shock region is expected to have an impact on both the emission from the a ccelerated particle population, as well as the acceleration process itself. Using a 95 ks observation with the Advanced CCD Imaging Spectrometer (ACIS) onboard the Chandra X-ray Observatory, we map and characterize the synchrotron emitting material in the northwestern region of RCW 86. We model spectra from several different regions, filamentary and diffuse alike, where emission appears dominated by synchrotron radiation. The fine spatial resolution of Chandra allows us to obtain accurate emission profiles across 3 different non-thermal rims in this region. The narrow width (l = 10-30) of these filaments constrains the minimum magnetic field strength at the post-shock region to be approximately 80 {mu}G.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا