ﻻ يوجد ملخص باللغة العربية
We present an analysis of OGLE 2004-BLG-254, a high-magnification and relatively short duration microlensing event in which the source star, a Bulge K3-giant, has been spatially resolved by a point-like lens. We have obtained dense photometric coverage of the event light curve with OGLE and PLANET telescopes, as well as a high signal-to-noise ratio spectrum taken while the source was still magnified by 20, using the UVES/VLT spectrograph. Our dense coverage of this event allows us to measure limb darkening of the source star in the I and R bands. We also compare previous measurements of linear limb-darkening coefficients involving GK-giant stars with predictions from ATLAS atmosphere models. We discuss the case of K-giants and find a disagreement between limb-darkening measurements and model predictions, which may be caused by the inadequacy of the linear limb-darkening law.
Gravitational microlensing is not only a successful tool for discovering distant exoplanets, but it also enables characterization of the lens and source stars involved in the lensing event. In high magnification events, the lens caustic may cross ove
We analyze the single microlensing event OGLE-2015-BLG-1482 simultaneously observed from two ground-based surveys and from textit{Spitzer}. The textit{Spitzer} data exhibit finite-source effects due to the passage of the lens close to or directly ove
We report the discovery of a giant planet in the OGLE-2017-BLG-1522 microlensing event. The planetary perturbations were clearly identified by high-cadence survey experiments despite the relatively short event timescale of $t_{rm E} sim 7.5$ days. Th
We report the analysis of the microlensing event OGLE-2018-BLG-0677. A small feature in the light curve of the event leads to the discovery that the lens is a star-planet system. Although there are two degenerate solutions that could not be distingui
Aims: We present a detailed analysis of OGLE 2004-BLG-482, a relatively high-magnification single-lens microlensing event which exhibits clear extended-source effects. These events are relatively rare, but they potentially contain unique information