ترغب بنشر مسار تعليمي؟ اضغط هنا

Limb-darkening measurements for a cool red giant in microlensing event OGLE 2004-BLG-482

294   0   0.0 ( 0 )
 نشر من قبل Marta Zub
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims: We present a detailed analysis of OGLE 2004-BLG-482, a relatively high-magnification single-lens microlensing event which exhibits clear extended-source effects. These events are relatively rare, but they potentially contain unique information on the stellar atmosphere properties of their source star, as shown in this study. Methods: Our dense photometric coverage of the overall light curve and a proper microlensing modelling allow us to derive measurements of the OGLE 2004-BLG-482 source stars linear limb-darkening coefficients in three bands, including standard Johnson-Cousins I and R, as well as in a broad clear filter. In particular, we discuss in detail the problems of multi-band and multi-site modelling on the expected precision of our results. We also obtained high-resolution UVES spectra as part of a ToO programme at ESO VLT from which we derive the source stars precise fundamental parameters. Results: From the high-resolution UVES spectra, we find that OGLE 2004-BLG-482s source star is a red giant of MK type a bit later than M3, with Teff = 3667 +/- 150 K, log g = 2.1 +/- 1.0 and an assumed solar metallicity. This is confirmed by an OGLE calibrated colour-magnitude diagram. We then obtain from a detailed microlensing modelling of the light curve linear limb-darkening coefficients that we compare to model-atmosphere predictions available in the literature, and find a very good agreement for the I and R bands. In addition, we perform a similar analysis using an alternative description of limb darkening based on a principal component analysis of ATLAS limb-darkening profiles, and also find a very good agreement between measurements and model predictions.



قيم البحث

اقرأ أيضاً

211 - P. Fouque , D. Heyrovsky , S. Dong 2010
Gravitational microlensing is not only a successful tool for discovering distant exoplanets, but it also enables characterization of the lens and source stars involved in the lensing event. In high magnification events, the lens caustic may cross ove r the source disk, which allows a determination of the angular size of the source and additionally a measurement of its limb darkening. When such extended-source effects appear close to maximum magnification, the resulting light curve differs from the characteristic Paczynski point-source curve. The exact shape of the light curve close to the peak depends on the limb darkening of the source. Dense photometric coverage permits measurement of the respective limb-darkening coefficients. In the case of microlensing event OGLE 2008-BLG-290, the K giant source star reached a peak magnification of about 100. Thirteen different telescopes have covered this event in eight different photometric bands. Subsequent light-curve analysis yielded measurements of linear limb-darkening coefficients of the source in six photometric bands. The best-measured coefficients lead to an estimate of the source effective temperature of about 4700 +100-200 K. However, the photometric estimate from colour-magnitude diagrams favours a cooler temperature of 4200 +-100 K. As the limb-darkening measurements, at least in the CTIO/SMARTS2 V and I bands, are among the most accurate obtained, the above disagreement needs to be understood. A solution is proposed, which may apply to previous events where such a discrepancy also appeared.
We report a giant exoplanet discovery in the microlensing event OGLE-2017-BLG-1049, which is a planet-host star mass ratio of $q=9.53pm0.39times10^{-3}$ and has a caustic crossing feature in the Korea Microlensing Telescope Network (KMTNet) observati ons. The caustic crossing feature yields an angular Einstein radius of $theta_{rm E}=0.52 pm 0.11 {rm mas}$. However, the microlens parallax is not measured because of the time scale of the event $t_{rm E}simeq 29 {rm days}$, which is not long enough in this case to determine the microlens parallax. Thus, we perform a Bayesian analysis to estimate physical quantities of the lens system. From this, we find that the lens system has a star with mass $M_{rm h}=0.55^{+0.36}_{-0.29} M_{odot}$ hosting a giant planet with $M_{rm p}=5.53^{+3.62}_{-2.87} M_{rm Jup}$, at a distance of $D_{rm L}=5.67^{+1.11}_{-1.52} {rm kpc}$. The projected star-planet separation in units of the Einstein radius $(theta_{rm E})$ corresponding to the total mass of the lens system is $a_{perp}=3.92^{+1.10}_{-1.32} rm{au}$. This means that the planet is located beyond the snow line of the host. The relative lens-source proper motion is $mu_{rm rel}sim 7 rm{mas yr^{-1}}$, thus the lens and source will be separated from each other within 10 years. Then the flux of the host star can be measured by a 30m class telescope with high-resolution imaging in the future, and thus its mass can be determined.
We present the analysis of the planetary microlensing event OGLE-2014-BLG-1760, which shows a strong light curve signal due to the presence of a Jupiter mass-ratio planet. One unusual feature of this event is that the source star is quite blue, with $V-I = 1.48pm 0.08$. This is marginally consistent with source star in the Galactic bulge, but it could possibly indicate a young source star in the far side of the disk. Assuming a bulge source, we perform a Bayesian analysis assuming a standard Galactic model, and this indicates that the planetary system resides in or near the Galactic bulge at $D_L = 6.9 pm 1.1 $ kpc. It also indicates a host star mass of $M_* = 0.51 pm 0.44 M_odot$, a planet mass of $m_p = 180 pm 110 M_oplus$, and a projected star-planet separation of $a_perp = 1.7pm 0.3,$AU. The lens-source relative proper motion is $mu_{rm rel} = 6.5pm 1.1$ mas/yr. The lens (and stellar host star) is predicted to be very faint, so it is most likely that it can detected only when the lens and source stars are partially resolved. Due to the relatively high relative proper motion, the lens and source will be resolved to about $sim46,$mas in 6-8 years after the peak magnification. So, by 2020 - 2022, we can hope to detect the lens star with deep, high resolution images.
For all exoplanet candidates, the reliability of a claimed detection needs to be assessed through a careful study of systematic errors in the data to minimize the false positives rate. We present a method to investigate such systematics in microlensi ng datasets using the microlensing event OGLE-2013-BLG-0446 as a case study. The event was observed from multiple sites around the world and its high magnification (A_{max} sim 3000) allowed us to investigate the effects of terrestrial and annual parallax. Real-time modeling of the event while it was still ongoing suggested the presence of an extremely low-mass companion (sim 3M_oplus ) to the lensing star, leading to substantial follow-up coverage of the light curve. We test and compare different models for the light curve and conclude that the data do not favour the planetary interpretation when systematic errors are taken into account.
313 - N. Kains , R. Street , J.-Y. Choi 2013
We present the analysis of the gravitational microlensing event OGLE-2011-BLG-0251. This anomalous event was observed by several survey and follow-up collaborations conducting microlensing observations towards the Galactic Bulge. Based on detailed mo delling of the observed light curve, we find that the lens is composed of two masses with a mass ratio q=1.9 x 10^-3. Thanks to our detection of higher-order effects on the light curve due to the Earths orbital motion and the finite size of source, we are able to measure the mass and distance to the lens unambiguously. We find that the lens is made up of a planet of mass 0.53 +- 0.21,M_Jup orbiting an M dwarf host star with a mass of 0.26 +- 0.11 M_Sun. The planetary system is located at a distance of 2.57 +- 0.61 kpc towards the Galactic Centre. The projected separation of the planet from its host star is d=1.408 +- 0.019, in units of the Einstein radius, which corresponds to 2.72 +- 0.75 AU in physical units. We also identified a competitive model with similar planet and host star masses, but with a smaller orbital radius of 1.50 +- 0.50 AU. The planet is therefore located beyond the snow line of its host star, which we estimate to be around 1-1.5 AU.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا