ترغب بنشر مسار تعليمي؟ اضغط هنا

The Water Vapor Abundance in Orion KL Outflows

76   0   0.0 ( 0 )
 نشر من قبل J. R. Goicoechea
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the detection and modeling of more than 70 far-IR pure rotational lines of water vapor, including the 18O and 17O isotopologues, towards Orion KL. Observations were performed with the Long Wavelength Spectrometer Fabry-Perot (LWS/FP; R~6800-9700) on board the Infrared Space Observatory (ISO) between ~43 and ~197 um. The water line profiles evolve from P-Cygni type profiles (even for the H2O18 lines) to pure emission at wavelengths above ~100 um. We find that most of the water emission/absorption arises from an extended flow of gas expanding at 25+-5 kms^-1. Non-local radiative transfer models show that much of the water excitation and line profile formation is driven by the dust continuum emission. The derived beam averaged water abundance is 2-3x10^-5. The inferred gas temperature Tk=80-100 K suggests that: (i) water could have been formed in the plateau by gas phase neutral-neutral reactions with activation barriers if the gas was previously heated (e.g. by shocks) to >500 K and/or (ii) H2O formation in the outflow is dominated by in-situ evaporation of grain water-ice mantles and/or (iii) H2O was formed in the innermost and warmer regions (e.g. the hot core) and was swept up in ~1000 yr, the dynamical timescale of the outflow.



قيم البحث

اقرأ أيضاً

In February 2011, a burst event of the H$_{2}$O maser in Orion KL (Kleinmann-Low object) has started after 13-year silence. This is the third time to detect such phenomena in Orion KL, followed by those in 1979-1985 and 1998. We have carried out astr ometric observations of the bursting H$_{2}$O maser features in Orion KL with VERA (VLBI Exploration of Radio Astrometry), a Japanese VLBI network dedicated for astrometry. The total flux of the bursting feature at the LSR velocity of 7.58 km s$^{-1}$ reaches 4.4$times10^{4}$ Jy in March 2011. The intensity of the bursting feature is three orders of magnitudes larger than that of the same velocity feature in the quiescent phase in 2006. Two months later, another new feature appears at the LSR velocity of 6.95 km s$^{-1}$ in May 2011, separated by 12 mas north of the 7.58 km s$^{-1}$ feature. Thus, the current burst occurs at two spatially different features. The bursting masers are elongated along the northwest-southeast direction as reported in the previous burst in 1998. We determine the absolute positions of the bursting features for the first time ever with a submilli-arcsecond (mas) accuracy. Their positions are coincident with the shocked molecular gas called the Orion Compact Ridge. We tentatively detect the absolute proper motions of the bursting features toward southwest direction. It is most likely that the outflow from the radio source I or another young stellar object interacting with the Compact Ridge is a possible origin of the H$_{2}$O maser burst.
115 - Martin Harwit 1998
Using the Long Wavelength Spectrometer (LWS) onboard the Infrared Space Observatory (ISO), we have observed thermal water vapor emission from a roughly circular field of view approximately 75 arc seconds in diameter centered on the Orion BN-KL region . The Fabry-Perot line strengths, line widths, and spectral line shifts observed in eight transitions between 71 and 125 microns show good agreement with models of thermal emission arising from a molecular cloud subjected to a magnetohydrodynamic C-type shock. Both the breadth and the relative strengths of the observed lines argue for emission from a shock rather than from warm quiescent gas in the Orion core. Though one of the eight transitions appears anomalously strong, and may be subject to the effects of radiative pumping, the other seven indicate an H2O/H2 abundance ratio of order 5E-4, and a corresponding gas-phase oxygen-to-hydrogen abundance ratio of order 4E-4. Given current estimates of the interstellar, gas-phase, oxygen and carbon abundances in the solar vicinity, this value is consistent with theoretical shock models that predict the conversion into water of all the gas-phase oxygen that is not bound as CO. The overall cooling provided by rotational transitions of H2O in this region appears to be comparable to the cooling through rotational lines of CO, but is an order of magnitude lower than cooling through H2 emission. However, the model that best fits our observations shows cooling by H2O and CO dominant in that portion of the post-shock region where temperatures are below ~ 800 K and neither vibrational nor rotational radiative cooling by H2 is appreciable.
Deuterated molecules have been detected and studied toward Orion BN/KL in the past decades, mostly with single-dish telescopes. However, high angular resolution data are critical not only for interpreting the spatial distribution of the deuteration r atio but also for understanding this complex region in terms of cloud evolution involving star-forming activities and stellar feedbacks. We present here the first high angular resolution (1.8 arcsec times 0.8 arcsec) images of deuterated methanol CH2DOH in Orion BN/KL observed with the IRAM Plateau de Bure Interferometer from 1999 to 2007 in the 1 to 3 mm range. Six CH2DOH lines were detected around 105.8, 223.5, and 225.9 GHz. In addition, three E-type methanol lines around 101-102 GHz were detected and were used to derive the corresponding CH3OH rotational temperatures and column densities toward different regions across Orion BN/KL. The strongest CH2DOH and CH3OH emissions come from the Hot Core southwest region with an LSR velocity of about 8 km/s. We derive [CH2DOH]/[CH3OH] abundance ratios of 0.8-1.3times10^-3 toward three CH2DOH emission peaks. A new transition of CH3OD was detected at 226.2 GHz for the first time in the interstellar medium. Its distribution is similar to that of CH2DOH. Besides, we find that the [CH2DOH]/[CH3OD] abundance ratios are lower than unity in the central part of BN/KL. Furthermore, the HDO 3(1,2)-2(2,1) line at 225.9 GHz was detected and its emission distribution shows a shift of a few arcseconds with respect to the deuterated methanol emission that likely results from different excitation effects. The deuteration ratios derived along Orion BN/KL are not markedly different from one clump to another. However, various processes such as slow heating due to ongoing star formation, heating by luminous infrared sources, or heating by shocks could be competing to explain some local differences observed for these ratios.
251 - Gan Luo , Siyi Feng , Di Li 2019
We present an observational study of the sulfur (S)-bearing species towards Orion KL at 1.3 mm by combining ALMA and IRAM-30,m single-dish data. At a linear resolution of $sim$800 au and a velocity resolution of 1 $mathrm{km, s^{-1}, }$, we have iden tified 79 molecular lines from 6 S-bearing species. In these S-bearing species, we found a clear dichotomy between carbon-sulfur compounds and carbon-free S-bearing species in various characteristics, e.g., line profiles, spatial morphology, and molecular abundances with respect to $rm H_2$. Lines from the carbon-sulfur compounds (i.e., OCS, $^{13}$CS, H$_2$CS) exhibit spatial distributions concentrated around the continuum peaks and extended to the south ridge. The full width at half maximum (FWHM) linewidth of these molecular lines is in the range of 2 $sim$ 11 $mathrm{km, s^{-1}, }$. The molecular abundances of OCS and H$_2$CS decrease slightly from the cold ($sim$68 K) to the hot ($sim$176 K) regions. In contrast, lines from the carbon-free S-bearing species (i.e., SO$_2$, $^{34}$SO, H$_2$S) are spatially more extended to the northeast of mm4, exhibiting broader FWHM linewidths (15 $sim$ 26 $mathrm{km, s^{-1}, }$). The molecular abundances of carbon-free S-bearing species increase by over an order of magnitude as the temperature increase from 50 K to 100 K. In particular, $mathrm{^{34}SO/^{34}SO_2}$ and $mathrm{OCS/SO_2}$ are enhanced from the warmer regions ($>$100 K) to the colder regions ($sim$50 K). Such enhancements are consistent with the transformation of SO$_2$ at warmer regions and the influence of shocks.
We performed a sensitive search for the ground-state emission lines of ortho- and para-water vapor in the DM Tau protoplanetary disk using the Herschel/HIFI instrument. No strong lines are detected down to 3sigma levels in 0.5 km/s channels of 4.2 mK for the 1_{10}--1_{01} line and 12.6 mK for the 1_{11}--0_{00} line. We report a very tentative detection, however, of the 1_{10}--1_{01} line in the Wide Band Spectrometer, with a strength of T_{mb}=2.7 mK, a width of 5.6 km/s and an integrated intensity of 16.0 mK km/s. The latter constitutes a 6sigma detection. Regardless of the reality of this tentative detection, model calculations indicate that our sensitive limits on the line strengths preclude efficient desorption of water in the UV illuminated regions of the disk. We hypothesize that more than 95-99% of the water ice is locked up in coagulated grains that have settled to the midplane.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا