ﻻ يوجد ملخص باللغة العربية
Deuterated molecules have been detected and studied toward Orion BN/KL in the past decades, mostly with single-dish telescopes. However, high angular resolution data are critical not only for interpreting the spatial distribution of the deuteration ratio but also for understanding this complex region in terms of cloud evolution involving star-forming activities and stellar feedbacks. We present here the first high angular resolution (1.8 arcsec times 0.8 arcsec) images of deuterated methanol CH2DOH in Orion BN/KL observed with the IRAM Plateau de Bure Interferometer from 1999 to 2007 in the 1 to 3 mm range. Six CH2DOH lines were detected around 105.8, 223.5, and 225.9 GHz. In addition, three E-type methanol lines around 101-102 GHz were detected and were used to derive the corresponding CH3OH rotational temperatures and column densities toward different regions across Orion BN/KL. The strongest CH2DOH and CH3OH emissions come from the Hot Core southwest region with an LSR velocity of about 8 km/s. We derive [CH2DOH]/[CH3OH] abundance ratios of 0.8-1.3times10^-3 toward three CH2DOH emission peaks. A new transition of CH3OD was detected at 226.2 GHz for the first time in the interstellar medium. Its distribution is similar to that of CH2DOH. Besides, we find that the [CH2DOH]/[CH3OD] abundance ratios are lower than unity in the central part of BN/KL. Furthermore, the HDO 3(1,2)-2(2,1) line at 225.9 GHz was detected and its emission distribution shows a shift of a few arcseconds with respect to the deuterated methanol emission that likely results from different excitation effects. The deuteration ratios derived along Orion BN/KL are not markedly different from one clump to another. However, various processes such as slow heating due to ongoing star formation, heating by luminous infrared sources, or heating by shocks could be competing to explain some local differences observed for these ratios.
We present a comprehensive study of the deuterated molecules detected in the fullband HIFI survey of the Orion KL region. Ammonia, formaldehyde, and methanol and their singly deuterated isotopologues are each detected through numerous transitions in
We report the first high angular resolution imaging (3.4arcsec $times$ 3.0arcsec) of deuterated formaldehyde (HDCO) toward Orion--KL, carried out with the Submillimeter Array (SMA). We find that the spatial distribution of the formaldehyde emission s
During their infancy, stars are well known to expel matter violently in the form of well-defined, collimated outflows. A fairly unique exception is found in the Orion BN/KL star-forming region where a poorly collimated and somewhat disordered outflow
High spatial resolution low-J 12CO observations have shown that the wide-angle outflow seen in the Orion BN/KL region correlates with the famous H2 fingers. Recently, high-resolution large-scale mappings of mid- and higher-J CO emissions have been re
As one of the prime targets of interstellar chemistry study, Orion BN/KL clearly shows different molecular distributions between large nitrogen- (e.g., C2H5CN) and oxygen-bearing (e.g., HCOOCH3) molecules. However, acetone (CH3)2CO, a special complex