ترغب بنشر مسار تعليمي؟ اضغط هنا

Sensitive limits on the abundance of cold water vapor in the DM Tau protoplanetary disk

261   0   0.0 ( 0 )
 نشر من قبل Edwin A. Bergin
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We performed a sensitive search for the ground-state emission lines of ortho- and para-water vapor in the DM Tau protoplanetary disk using the Herschel/HIFI instrument. No strong lines are detected down to 3sigma levels in 0.5 km/s channels of 4.2 mK for the 1_{10}--1_{01} line and 12.6 mK for the 1_{11}--0_{00} line. We report a very tentative detection, however, of the 1_{10}--1_{01} line in the Wide Band Spectrometer, with a strength of T_{mb}=2.7 mK, a width of 5.6 km/s and an integrated intensity of 16.0 mK km/s. The latter constitutes a 6sigma detection. Regardless of the reality of this tentative detection, model calculations indicate that our sensitive limits on the line strengths preclude efficient desorption of water in the UV illuminated regions of the disk. We hypothesize that more than 95-99% of the water ice is locked up in coagulated grains that have settled to the midplane.

قيم البحث

اقرأ أيضاً

100 - L. Podio , I. Kamp , C. Codella 2013
Water is key in the evolution of protoplanetary disks and the formation of comets and icy/water planets. While high excitation water lines originating in the hot inner disk have been detected in several T Tauri stars (TTSs), water vapor from the oute r disk, where most of water ice reservoir is stored, was only reported in the closeby TTS TW Hya. We present spectrally resolved Herschel/HIFI observations of the young TTS DG Tau in the ortho- and para- water ground-state transitions at 557, 1113 GHz. The lines show a narrow double-peaked profile, consistent with an origin in the outer disk, and are ~19-26 times brighter than in TW Hya. In contrast, CO and [C II] lines are dominated by emission from the envelope/outflow, which makes H2O lines a unique tracer of the disk of DG Tau. Disk modeling with the thermo-chemical code ProDiMo indicates that the strong UV field, due to the young age and strong accretion of DG Tau, irradiates a disk upper layer at 10-90 AU from the star, heating it up to temperatures of 600 K and producing the observed bright water lines. The models suggest a disk mass of 0.015-0.1 Msun, consistent with the estimated minimum mass of the solar nebula before planet formation, and a water reservoir of ~1e2-1e3 Earth oceans in vapour, and ~100 times larger in the form of ice. Hence, this detection supports the scenario of ocean delivery on terrestrial planets by impact of icy bodies forming in the outer disk.
We study the content in S-bearing molecules of protoplanetary disks around low-mass stars. We used the new IRAM 30-m receiver EMIR to perform simultaneous observations of the $1_{10}-1_{01}$ line of H$_2$S at 168.8 GHz and $2_{23}-1_{12}$ line of SO at 99.3 GHz. We compared the observational results with predictions coming from the astrochemical code NAUTILUS, which has been adapted to protoplanetary disks. The data were analyzed together with existing CS J=3-2 observations. We fail to detect the SO and H$_2$S lines, although CS is detected in LkCa15, DM,Tau, and GO,Tau but not in MWC,480. However, our new upper limits are significantly better than previous ones and allow us to put some interesting constraints on the sulfur chemistry. Our best modeling of disks is obtained for a C/O ratio of 1.2, starting from initial cloud conditions of H density of $2times 10^5$ cm$^{-3}$ and age of $10^6$ yr. The results agree with the CS data and are compatible with the SO upper limits, but fail to reproduce the H$_2$S upper limits. The predicted H$_2$S column densities are too high by at least one order of magnitude. H$_2$S may remain locked onto grain surfaces and react with other species, thereby preventing the desorption of H$_2$S.
As the earliest stage of planet formation, massive, optically thick, and gas rich protoplanetary disks provide key insights into the physics of star and planet formation. When viewed edge-on, high resolution images offer a unique opportunity to study both the radial and vertical structures of these disks and relate this to vertical settling, radial drift, grain growth, and changes in the midplane temperatures. In this work, we present multi-epoch HST and Keck scattered light images, and an ALMA 1.3 mm continuum map for the remarkably flat edge-on protoplanetary disk SSTC2DJ163131.2-242627, a young solar-type star in $rho$ Ophiuchus. We model the 0.8 $mu$m and 1.3 mm images in separate MCMC runs to investigate the geometry and dust properties of the disk using the MCFOST radiative transfer code. In scattered light, we are sensitive to the smaller dust grains in the surface layers of the disk, while the sub-millimeter dust continuum observations probe larger grains closer to the disk midplane. An MCMC run combining both datasets using a covariance-based log-likelihood estimation was marginally successful, implying insufficient complexity in our disk model. The disk is well characterized by a flared disk model with an exponentially tapered outer edge viewed nearly edge-on, though some degree of dust settling is required to reproduce the vertically thin profile and lack of apparent flaring. A colder than expected disk midplane, evidence for dust settling, and residual radial substructures all point to a more complex radial density profile to be probed with future, higher resolution observations.
H$_2$CO ice on dust grains is an important precursor of complex organic molecules (COMs). H$_2$CO gas can be readily observed in protoplanetary disks and may be used to trace COM chemistry. However, its utility as a COM probe is currently limited by a lack of constraints on the relative contributions of two different formation pathways: on icy grain-surfaces and in the gas-phase. We use archival ALMA observations of the resolved distribution of H$_2$CO emission in the disk around the young low-mass star DM Tau to assess the relative importance of these formation routes. The observed H$_2$CO emission has a centrally peaked and radially broad brightness profile (extending out to 500 AU). We compare these observations with disk chemistry models with and without grain-surface formation reactions, and find that both gas and grain-surface chemistry are necessary to explain the spatial distribution of the emission. Gas-phase H$_2$CO production is responsible for the observed central peak, while grain-surface chemistry is required to reproduce the emission exterior to the CO snowline (where H$_2$CO mainly forms through the hydrogenation of CO ice before being non-thermally desorbed). These observations demonstrate that both gas and grain-surface pathways contribute to the observed H$_2$CO in disks, and that their relative contributions depend strongly on distance from the host star.
88 - D. Semenov 2018
Context. Several sulfur-bearing molecules are observed in the interstellar medium and in comets, in strong contrast to protoplanetary disks where only CS, H$_2$CS and SO have been detected so far. Aims. We combine observations and chemical models to constrain the sulfur abundances and their sensitivity to physical and chemical conditions in the DM Tau protoplanetary disk. Methods. We obtained $0.5^{}$ ALMA observations of DM Tau in Bands 4 and 6 in lines of CS, SO, SO$_2$, OCS, CCS, H$_2$CS and H$_2$S, achieving a $sim 5$ mJy sensitivity. Using the non-LTE radiative transfer code RADEX and the forward-modeling tool DiskFit, disk-averaged CS column densities and upper limits for the other species were derived. Results. Only CS was detected with a derived column density of $sim 2-6 times 10^{12}$ cm$^{-2}$. We report a first tentative detection of SO$_2$ in DM Tau. The upper limits range between $sim 10^{11}$ and $10^{14}$ cm$^{-2}$ for the other S-bearing species. The best-fit chemical model matching these values requires a gas-phase C/O ratio of > 1 at $r sim 50-100$ au. With chemical modeling we demonstrate that sulfur-bearing species could be robust tracers of the gas-phase C/O ratio, surface reaction rates, grain size and UV intensities. Conclusions. The lack of detections of a variety of sulfur-bearing molecules in DM Tau other than CS implies a dearth of reactive sulfur in the gas phase, either through efficient freeze-out or because most of the elemental sulfur is in other large species, as found in comets. The inferred high CS/SO and CS/SO$_2$ ratios require a non-solar C/O gas-phase ratio of > 1, consistent with the recent observations of hydrocarbon rings in DM Tau. The stronger depletion of oxygen-bearing S-species compared to CS is likely linked to the low observed abundances of gaseous water in DM Tau and points to a removal mechanism of oxygen from the gas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا