ﻻ يوجد ملخص باللغة العربية
We measure the volume luminosity density and surface luminosity density generated by the Galactic disc, using accurate data on the local luminosity function and the discs vertical structure. From the well measured volume mass density and surface mass density, we derive local volume and surface mass-to-light ratios for the Galactic disc, in the bands B, V and I. We obtain mass-to-light ratios for the local column of stellar matter of (M/L)_B = 1.4 +/- 0.2, (M/L)_V = 1.5 +/- 0.2 and (M/L)_I = 1.2 +/- 0.2. The dominant contributors to the surface luminosity in these bands are main sequence turn-off stars and giants. Our results on the colours and mass-to-light ratios for the ``Solar cylinder well agree with population synthesis predictions using Initial Mass Functions typical of the Solar Neighbourhood. Finally we infer the global luminosity of the Milky Way, which appears to be under-luminous by about 1-sigma with respect to the main locus of the Tully-Fisher relation, as observed for external galaxies.
A new sample of stars, representative of the solar neighbourhood luminosity function, is constructed from the Hipparcos catalogue and the Fifth Catalogue of Nearby Stars. We have cross-matched to sources in the 2MASS catalogue so that for all stars i
Our goal is to characterise the dependence of the optical mass-to-light ratio on galaxy colour up to z = 1.5, expanding the redshift range explored in previous work. From the ALHAMBRA redshifts, stellar masses, and rest-frame luminosities provided by
The majority of galaxy mergers are expected to be minor mergers. The observational signatures of minor mergers are not well understood, thus there exist few constraints on the minor merger rate. This paper seeks to address this gap in our understandi
We examine the dependence of the mass-to-light (M/L) ratio of large-scale structure on cosmological parameters, in models that are constrained to match observations of the projected galaxy correlation function w(rp). For a sequence of cosmological mo
The dark matter content of early,- type galaxies (ETGs) is a hotly debated topic with contrasting results arguing in favour or against the presence of significant dark mass within the effective radius and the change with luminosity and mass. In order