ﻻ يوجد ملخص باللغة العربية
We examine the dependence of the mass-to-light (M/L) ratio of large-scale structure on cosmological parameters, in models that are constrained to match observations of the projected galaxy correlation function w(rp). For a sequence of cosmological models with a fixed P(k) shape and increasing normalization sig8, we find parameters of the galaxy halo occupation distribution (HOD) that reproduce SDSS measurements of w(rp) as a function of luminosity. Using these HOD models we calculate mean M/L ratios as a function of halo mass and populate halos of N-body simulations to compute M/L in larger scale environments, including cluster infall regions. For all cosmological models, the M/L ratio in high mass halos or high density regions is approximately independent of halo mass or smoothing scale. However, the plateau value of M/L depends on sig8 as well as Omega_m, and it represents the universal mass-to-light ratio <M/L> only for models in which the galaxy correlation function is approximately unbiased, i.e., with sig8 ~ sig8_gal. Our results for cluster mass halos follow the trend M/L = 577(Omega_m/0.3)(sig8/0.9)^{1.7} h Msun/Lsun. Combined with Carlberg et al.s (1996) mean M/L ratio of CNOC galaxy clusters, this relation implies (sig8/0.9)(Omega_m/0.3)^{0.6} = 0.75 +/- 0.06. M/L ratios of clusters from the SDSS and CAIRNS surveys yield similar results. This constraint is inconsistent with parameter values Omega_m ~ 0.3, sig8 ~ 0.9 favored by recent joint analyses of CMB measurements and other large-scale structure data. We discuss possible resolutions, none of which seems entirely satisfactory. Appendices present an improved formula for halo bias factors and an improved analytic technique for calculating the galaxy correlation function from a given cosmological model and HOD. (Abridged)
The dark matter content of early,- type galaxies (ETGs) is a hotly debated topic with contrasting results arguing in favour or against the presence of significant dark mass within the effective radius and the change with luminosity and mass. In order
The magnetization $|Omega_{mathrm e}|/omega_{mathrm{e}}$ is an important parameter in plasma astrophysics, where $Omega_{mathrm e}$ and $omega_{mathrm{e}}$ are the electron gyro-frequency and electron plasma frequency, respectively. It only depends o
We have tested the effect of spatial gradients in stellar mass-to-light ratio (Y) on measurements of black hole masses (MBH) derived from stellar orbit superposition models. Such models construct a static gravitational potential for a galaxy and its
We analyze the stellar mass-to-light ratio (M/L) gradients in a large sample of local galaxies taken from the Sloan Digital Sky Survey, spanning a wide range of stellar masses and morphological types. As suggested by the well known relationship betwe
We combine Spitzer $3.6mu$ observations of a sample of disk galaxies spanning over 10 magnitudes in luminosity with optical luminosities and colors to test population synthesis prescriptions for computing stellar mass. Many commonly employed models f