ترغب بنشر مسار تعليمي؟ اضغط هنا

The ALHAMBRA survey: tight dependence of the optical mass-to-light ratio on galaxy colour up to z = 1.5

60   0   0.0 ( 0 )
 نشر من قبل Carlos L\\'opez-Sanjuan
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Our goal is to characterise the dependence of the optical mass-to-light ratio on galaxy colour up to z = 1.5, expanding the redshift range explored in previous work. From the ALHAMBRA redshifts, stellar masses, and rest-frame luminosities provided by the MUFFIT code, we derive the mass-to-light ratio vs. colour relation (MLCR) both for quiescent and star-forming galaxies. The intrinsic relation and its physical dispersion are derived with a Bayesian inference model. The rest-frame i-band mass-to-light ratio of quiescent and star-forming galaxies presents a tight correlation with the rest-frame (g - i) colour up to z = 1.5. Such MLCR is linear for quiescent galaxies and quadratic for star-forming galaxies. The intrinsic dispersion in these relations is 0.02 dex for quiescent galaxies and 0.06 dex for star-forming ones. The derived MLCRs do not present a significant redshift evolution and are compatible with previous local results in the literature. Finally, these tight relations also hold for g- and r-band luminosities. The derived MLCRs in ALHAMBRA can be used to predict the mass-to-light ratio from a rest-frame optical colour up to z = 1.5. These tight correlations do not change with redshift, suggesting that galaxies have evolved along the derived relations during the last 9 Gyr.



قيم البحث

اقرأ أيضاً

Our aim is to determine the distribution of stellar population parameters (extinction, age, metallicity, and star formation rate) of quiescent galaxies within the rest-frame stellar mass$-$colour and $UVJ$ colour$-$colour diagrams corrected for extin ction up to $zsim1$. These novel diagrams reduce the contamination in samples of quiescent galaxies owing to dust-reddened galaxies, and they provide useful constraints on stellar population parameters. We set constraints on the stellar population parameters of quiescent galaxies combining the ALHAMBRA multi-filter photo-spectra with our SED-fitting code MUFFIT, making use of composite stellar population models. The extinction obtained by MUFFIT allowed us to remove dusty star-forming (DSF) galaxies from the sample of red $UVJ$ galaxies. The distributions of stellar population parameters across these rest-frame diagrams are revealed after the dust correction and are fitted by the LOESS method to reduce uncertainty effects. Quiescent galaxy samples defined via classical $UVJ$ diagrams are typically contaminated by a $sim20$% fraction of DSF galaxies. A significant part of the galaxies in the green valley are actually obscured star-forming galaxies ($sim30-65$%). Consequently, the transition of galaxies from the blue cloud to the red sequence, and hence the related mechanisms for quenching, seems to be much more efficient and faster than previously reported. The rest-frame stellar mass$-$colour and $UVJ$ colour$-$colour diagrams are useful for constraining the age, metallicity, extinction, and star formation rate of quiescent galaxies by only their redshift, rest-frame colours, and/or stellar mass. Dust correction plays an important role in understanding how quiescent galaxies are distributed in these diagrams and is key to performing a pure selection of quiescent galaxies via intrinsic colours.
We perform a comprehensive study of the stellar population properties of quiescent galaxies as a function of size and stellar mass to constrain the physical mechanism governing the stellar mass assembly and the likely evolutive scenarios that explain their growth in size. After selecting all the quiescent galaxies from the ALHAMBRA survey by the dust-corrected stellar mass$-$colour diagram, we built a shared sample of $sim850$ quiescent galaxies with reliable sizes from the HST. The stellar population properties were retrieved using the SED-fitting code MUFFIT with various sets of composite stellar population models. Age, formation epoch, metallicity, and extinction were studied on the stellar mass$-$size plane as function of size through a Monte Carlo approach. This accounted for uncertainties and degeneracy effects amongst stellar population properties. The stellar population properties of quiescent galaxies and their stellar mass and size since $zsim1$ are correlated. At fixed stellar mass, the more compact the quiescent galaxy, the older and richer in metals it is ($1$Gyr and $0.1$dex, respectively). In addition, more compact galaxies may present slight lower extinctions than their more extended counterparts at the same stellar mass ($<0.1$ mag). By means of studying constant regions of stellar population properties across the stellar mass$-$size plane, we obtained empirical relations to constrain the physical mechanism that governs the stellar mass assembly of the form $M_star propto r_mathrm{c}^alpha$, where $alpha$ amounts to $0.50-0.55 pm 0.09$. There are indications that support the idea that the velocity dispersion is tightly correlated with the stellar content of galaxies. The mechanisms driving the evolution of stellar populations can therefore be partly linked to the dynamical properties of galaxies, along with their gravitational potential.
We present the first measurements of the Probability Distribution Function (PDF) of galaxy fluctuations in the VIMOS-VLT Deep Survey (VVDS) cone, covering 0.4x0.4 deg between 0.4<z<1.5. The second moment of the PDF, i.e. the rms fluctuations of the g alaxy density field, is with good approximation constant over the full redshift baseline investigated: we find that, in redshift space, sigma_8 for galaxies brighter than M=-20+5log h has a mean value of 0.94pm0.07 in the redshift interval 0.7<z<1.5. The third moment, i.e. the skewness, increases with cosmic time: we find that the probability of having underdense regions is greater at z~0.7 than it was at z~1.5. By comparing the PDF of galaxy density contrasts with the theoretically predicted PDF of mass fluctuations we infer the redshift-, density-, and scale-dependence of the biasing function b(z, delta, R) between galaxy and matter overdensities up to redshift z=1.5. Our results can be summarized as follows: i) the galaxy bias is an increasing function of redshift: evolution is marginal up to z~0.8 and more pronounced for z>0.8; ii) the formation of bright galaxies is inhibited below a characteristic mass-overdensity threshold whose amplitude increases with redshift and luminosity; iii) the biasing function is non linear in all the redshift bins investigated with non-linear effects of the order of a few to 10% on scales >5Mpc.
[Abridged] We perform on galaxy mock catalogues the same colour-density analysis made by Cucciati et al. (2006) on a 5 Mpc/h scale using the VVDS-Deep survey, and compare the results from mocks with observed data. We use mocks with the same flux limi ts (I=24) as the VVDS (CMOCKS), built using the semi- analytic model by De Lucia & Blaizot (2007) applied to the Millennium Simulation. From CMOCKS, we extracted samples of galaxies mimicking the VVDS observational strategy (OMOCKS). We computed the B-band Luminosity Function LF and the colour-density relation (CDR) in the mocks. We find that the LF in mocks roughly agrees with the observed LF, but at z<0.8 the faint-end slope of the model LF is steeper than the VVDS one. Computing the LF for early and late type galaxies, we show that mocks have an excess of faint early-type and of bright late-type galaxies with respect to data. We find that the CDR in OMOCKS is in excellent agreement with the one in CMOCKS. At z~0.7, the CDR in mocks agrees with the VVDS one (red galaxies reside mainly in high densities). Yet, the strength of the CDR in mocks does not vary within 0.2<z<1.5, while the observed relation flattens with increasing z and possibly inverts at z=1.3. We argue that the lack of evolution in the CDR in mocks is not due only to inaccurate prescriptions for satellite galaxies, but that also the treatment of central galaxies has to be revised. The reversal of the CDR can be explained by wet mergers between young galaxies, producing a starburst event. This should be seen on group scales. A residual of this is found in observations at z=1.5 on larger scales, but not in the mocks, suggesting that the treatment of physical processes affecting satellites and central galaxies in models should be revised.
We aim at constraining the stellar population properties of quiescent galaxies. These properties reveal how these galaxies evolved and assembled since $zsim1$ up to the present time. Combining the ALHAMBRA multi-filter photo-spectra with the SED-fitt ing code MUFFIT, we build a complete catalogue of quiescent galaxies via the dust-corrected stellar mass vs colour diagram. This catalogue includes stellar population properties, such as age, metallicity, extinction, stellar mass and photometric redshift, retrieved from the analysis of composited populations based on two independent sets of SSP models. We develop and apply a novel methodology to provide, for the first time, the analytic probability distribution functions (PDFs) of mass-weighted age, metallicity, and extinction of quiescent galaxies as a function of redshift and stellar mass. We adopt different star formation histories to discard potential systematics in the analysis. The number density of quiescent galaxies is found to increase since $zsim1$, with a more substantial variation at lower mass. Quiescent galaxies feature extinction $A_V<0.6$, with median values in the range $A_V = 0.15mathrm{-}0.3$. At increasing stellar mass, quiescent galaxies are older and more metal rich since $zsim1$. A detailed analysis of the PDFs reveals that the evolution of quiescent galaxies is not compatible with passive evolution and a slight decrease is hinted at median metallicity $0.1mathrm{-}0.2$~dex. The intrinsic dispersion of the age and metallicity PDFs show a dependence with stellar mass and/or redshift. These results are consistent with both sets of SSP models and the alternative SFH assumptions explored. Consequently, the quiescent population must undergo an evolutive pathway including mergers and/or remnants of star formation to reconcile the observed trends, where the `progenitor bias should also be taken into account.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا