ترغب بنشر مسار تعليمي؟ اضغط هنا

GALEX and Optical Light Curves of EF Eridanus During a Low State: the Puzzling Source of UV Light

46   0   0.0 ( 0 )
 نشر من قبل Paula Szkody
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Paula Szkody




اسأل ChatGPT حول البحث

Low state optical photometry of EF Eri during an extended low accretion state combined with GALEX near and far UV time-resolved photometry reveals a source of UV flux that is much larger than the underlying 9500K white dwarf, and that is highly modulated on the orbital period. The near UV and optical light curves can be modeled with a 20,000K spot but no spot model can explain both the large amplitude FUV variations and the SED. The limitations of limb darkening, cyclotron and magnetic white dwarf models in explaining the observations are discussed.


قيم البحث

اقرأ أيضاً

{it GALEX} near ultraviolet (NUV) and far-ultraviolet (FUV) light curves of three extremely low accretion rate polars show distinct modulations in their UV light curves. While these three systems have a range of magnetic fields from 13 to 70 MG, and of late type secondaries (including a likely brown dwarf in SDSSJ121209.31+013627.7), the accretion rates are similar, and the UV observations imply some mechanism is operating to create enhanced emission zones on the white dwarf. The UV variations match in phase to the two magnetic poles viewed in the optical in WX LMi and to the single poles evident in the optical in SDSSJ1212109.31+013627.7 and SDSSJ103100.55+202832.2. Simple spot models of the UV light curves show that if hot spots are responsible for the UV variations, the temperatures are on the order of 10,000-14,000K. For the single pole systems, the size of the FUV spot must be smaller than the NUV and in all cases, the geometry is likely more complicated than a simple circular spot.
The peaks of 30 optical afterglows and 14 X-ray light-curves display a good anticorrelation of the peak flux with the peak epoch: F_p ~ t_p^{-2.0} in the optical, F_p ~ t_p^{-1.6} in the X-ray, the distributions of the peak epochs being consistent wi th each other. We investigate the ability of two forward-shock models for afterglow light-curve peaks -- an observer location outside the initial jet aperture and the onset of the forward-shock deceleration -- to account for those peak correlations. For both models, the slope of the F_p - t_p relation depends only on the slope of the afterglow spectrum. We find that only a conical jet seen off-aperture and interacting with a wind-like medium can account for both the X-ray peak relation, given the average X-ray spectral slope beta_x = 1.0, and for the larger slope of the optical peak relation. However, any conclusion about the origin of the peak flux - peak epoch correlation is, at best, tentative, because the current sample of X-ray peaks is too small to allow a reliable measurement of the F_p - t_p relation slope and because more than one mechanism and/or one afterglow parameter may be driving that correlation.
Using recent data from photometric monitoring and data from the photographic plate archives we aim to study, the long-term photometric behavior of FUors. The construction of the historical light curves of FUors could be very important for determining the beginning of the outburst, the time to reach the maximum light, the rate of increase and decrease in brightness, the pre-outburst variability of the star. Our CCD photometric observations were performed with the telescopes of the Rozhen (Bulgaria) and Skinakas (Crete, Greece) observatories. Most suitable for long-term photometric study are the plate archives of the big Schmidt telescopes, as the telescopes at Kiso Observatory, Asiago Observatory, Palomar Observatory and others. In comparing our results with light curves of the well-studied FUors, we conclude that every new FUor object shows different photometric behavior. Each known FUor has a different rate of increase and decrease in brightness and a different light curve shape.
We collect new and archival optical observations of nine black-widow millisecond pulsar binaries. New measurements include direct imaging with the Keck, Gemini-S, MDM, and LCO 2~m telescopes. This is supplemented by synthesized colors from Keck long- slit spectra. Four black-widow optical companions are presented here for the first time. Together these data provide multicolor photometry covering a large fraction of the orbital phase. We fit these light curves with a direct (photon) heating model using a version of the ICARUS light-curve modeling code. The fits provide distance and fill-factor estimates, inclinations, and heating powers. We compare the heating powers with the observed GeV luminosities, noting that the ratio is sensitive to pulsar distance and to the gamma-ray beaming. We make a specific correction for outer-gap model beams, but even then some sources are substantially discrepant, suggesting imperfect beaming corrections and/or errors in the fit distance. The fits prefer large metal abundance for half of the targets, a reasonable result for these wind-stripped secondaries. The companion radii indicate substantial Roche-lobe filling, $f_c approx 0.7-1$ except for PSR J0952$-$0607, which with $f_c< 0.5$ has a companion density $rho approx 10,{rm g,cm^{-3}}$, suggesting unusual evolution. We note that the direct-heating fits imply large heating powers and rather small inclinations, and we speculate that unmodeled effects can introduce such bias.
We present the rest-frame light curves in the optical and X-ray bands of an unbiased and complete sample of Swift long Gamma-Ray Bursts (GRBs), namely the BAT6 sample. The unbiased BAT6 sample (consisting of 58 events) has the highest level of comple teness in redshift ($sim$ 95%), allowing us to compute the rest-frame X-ray and optical light curves for 55 and 47 objects, respectively. We compute the X-ray and optical luminosities accounting for any possible source of absorption (Galactic and intrinsic) that could affect the observed fluxes in these two bands. We compare the behaviour observed in the X-ray and in the optical bands to assess the relative contribution of the emission during the prompt and afterglow phases. We unarguably demonstrate that the GRBs rest-frame optical luminosity distribution is not bimodal, being rather clustered around the mean value Log(L$_{R}$) = 29.9 $pm$ 0.8 when estimated at a rest frame time of 12 hr. This is in contrast with what found in previous works and confirms that the GRB population has an intrinsic unimodal luminosity distribution. For more than 70% of the events the rest-frame light curves in the X-ray and optical bands have a different evolution, indicating distinct emitting regions and/or mechanisms. The X-ray light curves normalised to the GRB isotropic energy (E$_{rm iso}$), provide evidence for X-ray emission still powered by the prompt emission until late times ($sim$ hours after the burst event). On the other hand, the same test performed for the E$_{rm iso}$-normalised optical light curves shows that the optical emission is a better proxy of the afterglow emission from early to late times.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا