ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiwavelength Monitoring of the Dwarf Seyfert 1 Galaxy NGC 4395. III. Optical Variability and X-ray/UV/Optical Correlations

85   0   0.0 ( 0 )
 نشر من قبل Louis-Benoit Desroches
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present optical observations of the low-luminosity Seyfert 1 nucleus of NGC 4395, as part of a multiwavelength reverberation-mapping program. Observations were carried out over two nights in 2004 April at Lick, Wise, and Kitt Peak Observatories. We obtained V-band and B-band photometry, and spectra over the range 3500-6800 Angstroms. Simultaneous Hubble Space Telescope UV and Chandra X-ray observations are presented in companion papers. Even though NGC 4395 was in an extremely low state of activity, we detect significant continuum variability of 2-10%, increasing toward shorter wavelengths. The continuum light curves, both spectroscopic and photometric, are qualitatively similar to the simultaneous UV and X-ray light curves. Inter-band cross-correlations suggest that the optical continuum emission lags behind the UV continuum emission by 24 +7/-9 min, and that the optical continuum emission lags behind the X-ray continuum emission by 44 +/- 13 min, consistent with a reprocessing model for active galactic nucleus emission. There are also hints of Balmer emission lines lagging behind the optical continuum by an amount slightly larger than the emission-line lag detected in the UV. These results are all similar to those of other Seyfert 1 nuclei. The emission-line lag yields a mass measurement of the central black hole, which although not very significant, is consistent with the value derived from the simultaneous UV data.



قيم البحث

اقرأ أيضاً

74 - Paul M. ONeill 2006
We report on two Chandra observations, and a simultaneous Hubble Space Telescope ultraviolet observation, of the dwarf Seyfert 1 galaxy NGC 4395. Each Chandra observation had a duration of ~30 ks, with a separation of ~50 ks. The spectrum was observe d to harden between these observations via a scaling down of the soft-band flux. The inter-observation variability is in a different sense to the observed variability within each observation and is most likely the result of increased absorption. Spectral variations were seen during the first observation suggesting that the X-ray emission is produced in more than one disconnected region. We have also re-analyzed a ~17 ks Chandra observation conducted in 2000. During the three Chandra observations the 2-10 keV flux is about a factor of 2 lower than seen during an XMM-Newton observation conducted in 2003. Moreover, the fractional variability amplitude exhibited during the XMM-Newton observation is significantly softer than seen during the Chandra observations. A power-spectral analysis of the first of the two new Chandra observations revealed a peak at 341s with a formal detection significance of 99%. A similar peak was seen previously in the 2000 Chandra data. However, the detection of this feature is tentative given that it was found in neither the second of our two new Chandra observations nor the XMM-Newton data, and it is much narrower than expected. The Hubble Space Telescope observation was conducted during part of the second Chandra visit. A zero-lag correlation between the ultraviolet and X-ray fluxes was detected with a significance of about 99.5%, consistent with the predictions of the two-phase model for the X-ray emission from active galactic nuclei.
69 - O.Shemmer , P.Romano , R.Bertram 2001
We present the results of a two-year long optical monitoring program of the narrow-line Seyfert 1 galaxy Akn 564. The majority of this monitoring project was also covered by X-ray observations (RXTE) and for a period of ~50 days, we observed the gala xy in UV (HST) and X-rays (RXTE & ASCA) simultaneously with the ground-based observations. Rapid and large-amplitude variations seen in the X-ray band, on a daily and hourly time-scale, were not detected at optical and UV wavelengths, which in turn exhibited much lower variability either on short (one day) or long (several months) time-scales. The only significant optical variations can be described as two 2--4 day events with ~10% flux variations. We detect no significant optical line variations and thus cannot infer a reverberation size for the broad-line region. Similarly, the large X-ray variations seem to vanish when the light curve is smoothed over a period of 30 days. The UV continuum follows the X-rays with a lag of ~0.4 days, and the optical band lags the UV band by ~2 days. No significant correlation was found between the entire X-ray dataset and the optical band. Focusing on a 20-day interval around the strongest optical event we detect a significant X-ray--optical correlation with similar events seen in the UV and X-rays. Our data are consistent with reprocessing models on the grounds of the energy emitted in this single event. However, several large X-ray flares produced no corresponding optical emission.
We present a flux-resolved X-ray analysis of the dwarf Seyfert 1.8 galaxy NGC 4395, based on three archival $XMM-Newton$ and one archival $NuSTAR$ observations. The source is known to harbor a low mass black hole ($sim 10^4- {rm a~ few~}times 10^{5}~ rm M_odot$) and shows strong variability in the full X-ray range during these observations. We model the flux-resolved spectra of the source assuming three absorbing layers: neutral, mildly ionized, and highly ionized ($N_{rm H} sim 1.6times 10^{22}-3.4 times 10^{23}~rm cm^{-2}$, $sim 0.8-7.8 times 10^{22}~rm cm^{-2}$, and $ 3.8 times 10^{22}~rm cm^{-2}$, respectively. The source also shows intrinsic variability by a factor of $sim 3$, on short timescales, due to changes in the nuclear flux, assumed to be a power law ($Gamma = 1.6-1.67$). Our results show a positive correlation between the intrinsic flux and the absorbers ionization parameter. The covering fraction of the neutral absorber varies during the first $XMM-Newton$ observation, which could explain the pronounced soft X-ray variability. However, the source remains fully covered by this layer during the other two observations, largely suppressing the soft X-ray variability. This suggests an inhomogeneous and layered structure in the broad line region. We also find a difference in the characteristic timescale of the power spectra between different energy ranges and observations. We finally show simulated spectra with $XRISM$, $Athena$, and $eXTP$, which will allow us to characterize the different absorbers, study their dynamics, and will help us identify their locations and sizes.
91 - J. E. Skelton 2004
We present optical spectroscopic observations of the least-luminous known Seyfert 1 galaxy, NGC 4395, which was monitored every half-hour over the course of 3 nights. The continuum emission varied by ~35 per cent over the course of 3 nights, and we f ind marginal evidence for greater variability in the blue continuum than the red. A number of diagnostic checks were performed on the data in order to constrain any systematic or aperture effects. No correlations were found that adequately explained the observed variability, hence we conclude that we have observed real intrinsic variability of the nuclear source. No simultaneous variability was measured in the broad H-beta line, although given the difficulty in deblending the broad and narrow components it is difficult to comment on the significance of this result. The observed short time-scale continuum variability is consistent with NGC 4395 having an intermediate-mass (~10^5 solar masses) central supermassive black hole, rather than a very low accretion rate. Comparison with the Seyfert 1 galaxy NGC 5548 shows that the observed variability seems to scale with black hole mass in roughly the manner expected in accretion models. However the absolute time-scale of variability differs by several orders of magnitude from that expected in simple accretion disc models in both cases.
111 - Main Pal 2017
We present detailed broadband UV/optical to X-ray spectral variability of the Seyfert 1 galaxy 1H 0419-577 using six XMM-Newton observations performed during 2002-2003. These observations covered a large amplitude variability event in which the soft X-ray (0.3-2 keV) count rate increased by a factor of ~4 in six months. The X-ray spectra during the variability are well described by a model consisting of a primary power law, blurred and distant reflection. The 2-10 keV power-law flux varied by a factor ~7 while the 0.3-2 keV soft X-ray excess flux derived from the blurred reflection component varied only by a factor of ~2. The variability event was also observed in the optical and UV bands but the variability amplitudes were only at the 6-10% level. The variations in the optical and UV bands appear to follow the variations in the X-ray band. During the rising phase, the optical bands appear to lag behind the UV band but during the declining phase, the optical bands appear to lead the UV band. Such behavior is not expected in the reprocessing models where the optical/UV emission is the result of reprocessing of X-ray emission in the accretion disc. The delayed contribution of the broad emission lines in the UV band or the changes in the accretion disc/corona geometry combined with X-ray reprocessing may give rise to the observed behavior of the variations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا