ترغب بنشر مسار تعليمي؟ اضغط هنا

Short time-scale optical variability of the dwarf Seyfert nucleus in NGC 4395

92   0   0.0 ( 0 )
 نشر من قبل Jessica Skelton
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. E. Skelton




اسأل ChatGPT حول البحث

We present optical spectroscopic observations of the least-luminous known Seyfert 1 galaxy, NGC 4395, which was monitored every half-hour over the course of 3 nights. The continuum emission varied by ~35 per cent over the course of 3 nights, and we find marginal evidence for greater variability in the blue continuum than the red. A number of diagnostic checks were performed on the data in order to constrain any systematic or aperture effects. No correlations were found that adequately explained the observed variability, hence we conclude that we have observed real intrinsic variability of the nuclear source. No simultaneous variability was measured in the broad H-beta line, although given the difficulty in deblending the broad and narrow components it is difficult to comment on the significance of this result. The observed short time-scale continuum variability is consistent with NGC 4395 having an intermediate-mass (~10^5 solar masses) central supermassive black hole, rather than a very low accretion rate. Comparison with the Seyfert 1 galaxy NGC 5548 shows that the observed variability seems to scale with black hole mass in roughly the manner expected in accretion models. However the absolute time-scale of variability differs by several orders of magnitude from that expected in simple accretion disc models in both cases.



قيم البحث

اقرأ أيضاً

We present a flux-resolved X-ray analysis of the dwarf Seyfert 1.8 galaxy NGC 4395, based on three archival $XMM-Newton$ and one archival $NuSTAR$ observations. The source is known to harbor a low mass black hole ($sim 10^4- {rm a~ few~}times 10^{5}~ rm M_odot$) and shows strong variability in the full X-ray range during these observations. We model the flux-resolved spectra of the source assuming three absorbing layers: neutral, mildly ionized, and highly ionized ($N_{rm H} sim 1.6times 10^{22}-3.4 times 10^{23}~rm cm^{-2}$, $sim 0.8-7.8 times 10^{22}~rm cm^{-2}$, and $ 3.8 times 10^{22}~rm cm^{-2}$, respectively. The source also shows intrinsic variability by a factor of $sim 3$, on short timescales, due to changes in the nuclear flux, assumed to be a power law ($Gamma = 1.6-1.67$). Our results show a positive correlation between the intrinsic flux and the absorbers ionization parameter. The covering fraction of the neutral absorber varies during the first $XMM-Newton$ observation, which could explain the pronounced soft X-ray variability. However, the source remains fully covered by this layer during the other two observations, largely suppressing the soft X-ray variability. This suggests an inhomogeneous and layered structure in the broad line region. We also find a difference in the characteristic timescale of the power spectra between different energy ranges and observations. We finally show simulated spectra with $XRISM$, $Athena$, and $eXTP$, which will allow us to characterize the different absorbers, study their dynamics, and will help us identify their locations and sizes.
We present optical observations of the low-luminosity Seyfert 1 nucleus of NGC 4395, as part of a multiwavelength reverberation-mapping program. Observations were carried out over two nights in 2004 April at Lick, Wise, and Kitt Peak Observatories. W e obtained V-band and B-band photometry, and spectra over the range 3500-6800 Angstroms. Simultaneous Hubble Space Telescope UV and Chandra X-ray observations are presented in companion papers. Even though NGC 4395 was in an extremely low state of activity, we detect significant continuum variability of 2-10%, increasing toward shorter wavelengths. The continuum light curves, both spectroscopic and photometric, are qualitatively similar to the simultaneous UV and X-ray light curves. Inter-band cross-correlations suggest that the optical continuum emission lags behind the UV continuum emission by 24 +7/-9 min, and that the optical continuum emission lags behind the X-ray continuum emission by 44 +/- 13 min, consistent with a reprocessing model for active galactic nucleus emission. There are also hints of Balmer emission lines lagging behind the optical continuum by an amount slightly larger than the emission-line lag detected in the UV. These results are all similar to those of other Seyfert 1 nuclei. The emission-line lag yields a mass measurement of the central black hole, which although not very significant, is consistent with the value derived from the simultaneous UV data.
We present optical light curves from the Transiting Exoplanet Survey Satellite (TESS) for the archetypical dwarf active galactic nucleus (AGN) in the nearby galaxy NGC 4395 hosting a $sim 10^5,M_odot$ supermassive black hole (SMBH). Significant varia bility is detected on timescales from weeks to hours before reaching the background noise level. The $sim$month-long, 30 minute-cadence, high-precision TESS light curve can be well fit by a simple damped random walk (DRW) model, with the damping timescale $tau_{rm DRW}$ constrained to be $2.3_{-0.7}^{+1.8}$~days ($1sigma$). NGC 4395 lies almost exactly on the extrapolation of the $tau_{rm DRW}-M_{rm BH}$ relation measured for AGNs with BH masses that are more than three orders of magnitude larger. The optical variability periodogram can be well fit by a broken power law with the high-frequency slope ($-1.88pm0.15$) and the characteristic timescale ($tau_{rm br}equiv 1/(2pi f_{rm br})=1.4_{-0.5}^{+1.9},$days) consistent with the DRW model within 1$sigma$. This work demonstrates the power of TESS light curves in identifying low-mass accreting SMBHs with optical variability, and a potential global $tau_{rm DRW}-M_{rm BH}$ relation that can be used to estimate SMBH masses with optical variability measurements.
74 - Paul M. ONeill 2006
We report on two Chandra observations, and a simultaneous Hubble Space Telescope ultraviolet observation, of the dwarf Seyfert 1 galaxy NGC 4395. Each Chandra observation had a duration of ~30 ks, with a separation of ~50 ks. The spectrum was observe d to harden between these observations via a scaling down of the soft-band flux. The inter-observation variability is in a different sense to the observed variability within each observation and is most likely the result of increased absorption. Spectral variations were seen during the first observation suggesting that the X-ray emission is produced in more than one disconnected region. We have also re-analyzed a ~17 ks Chandra observation conducted in 2000. During the three Chandra observations the 2-10 keV flux is about a factor of 2 lower than seen during an XMM-Newton observation conducted in 2003. Moreover, the fractional variability amplitude exhibited during the XMM-Newton observation is significantly softer than seen during the Chandra observations. A power-spectral analysis of the first of the two new Chandra observations revealed a peak at 341s with a formal detection significance of 99%. A similar peak was seen previously in the 2000 Chandra data. However, the detection of this feature is tentative given that it was found in neither the second of our two new Chandra observations nor the XMM-Newton data, and it is much narrower than expected. The Hubble Space Telescope observation was conducted during part of the second Chandra visit. A zero-lag correlation between the ultraviolet and X-ray fluxes was detected with a significance of about 99.5%, consistent with the predictions of the two-phase model for the X-ray emission from active galactic nuclei.
We report the first systematic analysis of single exposures of all optical and ultraviolet (UV) observations performed by the UltraViolet and Optical Telescope (UVOT) on board the {em Neil Gehrels Swift Observatory} satellite available up to 2019 Apr il of six $gamma$-ray-emitting narrow-line Seyfert 1 galaxies (NLSy1). Rapid variability has been significantly detected on hours time-scale for 1H 0323+342, SBS 0846+513, PMN J0948+0022, and PKS 2004-447 in 18 observations for a total of 34 events. In particular, we report the first detection of significant variability on short time-scale (3-6 ks) in optical for PKS 2004-447, and UV for 1H 0323+342 and PMN J0948+0022. The shortest variability time-scale observed for 1H 0323+342, SBS 0846+513, PMN J0948+0022, and PKS 2004-447 (assuming a Doppler factor delta = 10) gives a lower limit on the size of emission region between 9.7 $times$ 10$^{14}$ (for SBS 0846+513) and 1.6 $times$ 10$^{15}$ cm (for 1H 0323+342), suggesting that the optical and UV emission during these events is produced in compact regions within the jet. These observations provide unambiguous evidence about the relativistically beamed synchrotron emission in these sources, similar to blazars. A remarkable variability has been observed for PMN J0948+0022 on 2009 June 23 with an increase from $sim$1.1 to 0.4 mag going from v to w2 filter in $sim$1.6 h and a decrease at the initial level in a comparable time. The higher fractional flux change observed for this and other events at lower frequencies suggests that the synchrotron emission is more contaminated by thermal emission from accretion disc at higher frequencies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا